On asphericity of convex body
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 45-58

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a finite-dimensional problem of minimizing for a given convex body the ratio of the circumscribed ball radius to the inscribed ball radius (in an arbitrary norm) by choosing the common center of these balls. We establish quasiconvexity and subdifferentiability of the objective function of this problem. We find a criterion of a solution and conditions of its uniqueness. The main problem is compared with problems which are close to it in geometric sense.
Keywords: asphericity, convex body, subdifferential, quasiconvexity, uniform estimate.
@article{IVM_2015_2_a5,
     author = {S. I. Dudov and E. A. Meshcheryakova},
     title = {On asphericity of convex body},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--58},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - E. A. Meshcheryakova
TI  - On asphericity of convex body
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 45
EP  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/
LA  - ru
ID  - IVM_2015_2_a5
ER  - 
%0 Journal Article
%A S. I. Dudov
%A E. A. Meshcheryakova
%T On asphericity of convex body
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 45-58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/
%G ru
%F IVM_2015_2_a5
S. I. Dudov; E. A. Meshcheryakova. On asphericity of convex body. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 45-58. http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/