On asphericity of convex body
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 45-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a finite-dimensional problem of minimizing for a given convex body the ratio of the circumscribed ball radius to the inscribed ball radius (in an arbitrary norm) by choosing the common center of these balls. We establish quasiconvexity and subdifferentiability of the objective function of this problem. We find a criterion of a solution and conditions of its uniqueness. The main problem is compared with problems which are close to it in geometric sense.
Keywords: asphericity, convex body, subdifferential, quasiconvexity, uniform estimate.
@article{IVM_2015_2_a5,
     author = {S. I. Dudov and E. A. Meshcheryakova},
     title = {On asphericity of convex body},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--58},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - E. A. Meshcheryakova
TI  - On asphericity of convex body
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 45
EP  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/
LA  - ru
ID  - IVM_2015_2_a5
ER  - 
%0 Journal Article
%A S. I. Dudov
%A E. A. Meshcheryakova
%T On asphericity of convex body
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 45-58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/
%G ru
%F IVM_2015_2_a5
S. I. Dudov; E. A. Meshcheryakova. On asphericity of convex body. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 45-58. http://geodesic.mathdoc.fr/item/IVM_2015_2_a5/

[1] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[2] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[3] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[4] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[5] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[6] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1986 | MR

[7] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[8] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno-vypuklogo analiza, Fizmatlit, M., 2004

[9] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006

[10] Makeev V. V., “Skol kruglaya ten suschestvuet u vypuklogo tela”, Zap. nauchn. semin. POMI, 329, 2005, 67–78 | MR | Zbl

[11] Kamenev G. G., “Skorost skhodimosti adaptivnykh metodov poliedralnoi approksimatsii vypuklykh tel na nachalnom etape”, Zhurn. vychisl. matem. i matem fiz., 48:5 (2008), 763–778 | MR | Zbl

[12] D'Ocagne M., “Sur certaine figures minimales”, Bull. Soc. Math. France, 12 (1884), 168–177 | MR

[13] Lebesque H., “Sur quelques questions de minimum, relatives and courbes orbiformes, et sur leurs rapports avec le calcul des variations”, J. Math., 4:8 (1921), 67–96

[14] Vincze St., “Über den Minimalkreisring einer Eilinie”, Acta Sci. Math. (Szeged), 11:3 (1947), 133–138 | MR | Zbl

[15] Vincze I., “Über Kreisringe, die eine Eilinie einschlissen”, Studia Sci. Math. Hungar., 9:1–2 (1974), 155–159 | MR

[16] Kriticos N., “Über convexe Flachen und einschlissende Kugeln”, Math. Ann., 96 (1927), 583–586 | DOI | MR

[17] Barany I., “On the minimal ring containing the boundary of convex body”, Acta Sci. Math. (Szeged), 52:1–2 (1988), 93–100 | MR | Zbl

[18] Zucco A., “Minimal shell of a typical convex body”, Proc. Amer. Math. Soc., 109 (1990), 797–802 | DOI | MR | Zbl

[19] Nikolskii M. S., Silin D. B., “Nailuchshee priblizhenie vypuklogo kompakta elementami addiala”, Tr. MI RAN, 211, 1995, 338–354 | MR | Zbl

[20] Dudov S. I., “Ob otsenke granitsy vypuklogo kompakta sharovym sloem”, Izv. Saratovsk. un-ta, 1:2 (2001), 64–75

[21] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | DOI | MR | Zbl

[22] Dudov S. I., Zlatorunskaya I. V., “Best approximation of a compact set by a ball in an arbitrary norm”, dvances in mathematics research, v. 2, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 81–114 | MR | Zbl

[23] Dudov S. I., Zlatorunskaya I. V., “O priblizhennoi ravnomernoi otsenke vypuklogo kompakta sharom proizvolnoi normy”, Zhurn. vychisl. matem. i matem. fiz., 45:3 (2005), 416–428 | MR | Zbl

[24] Dudov S. I., “Vzaimosvyaz nekotorykh zadach po otsenke vypuklogo kompakta sharom”, Matem. sb., 198:1 (2007), 43–58 | DOI | MR | Zbl

[25] Dudov S. I., “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | DOI | MR | Zbl

[26] Dudov S. I., Mescheryakova E. A., “O priblizhennom reshenii zadachi ob asferichnosti vypuklogo kompakta”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 10:4 (2010), 13–17