On the maximal finite-dimensional Lie algebras with given nilradical
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 35-44
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the set of finite-dimensional Lie algebras with fixed nilradical (in the capacity of which any nilpotent Lie algebra may serve). We prove an exact estimate for dimensions of Lie algebras from this set. We also show that there may exist several Lie algebras in this set, possessing the maximal dimension. Proofs are based on a concept of algebraic splitting for finite-dimensional Lie algebras.
Keywords:
Lie algebra, algebraic splitting of the Lie algebra, Chevalley's decomposition.
Mots-clés : nilradical
Mots-clés : nilradical
@article{IVM_2015_2_a4,
author = {V. V. Gorbatsevich},
title = {On the maximal finite-dimensional {Lie} algebras with given nilradical},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {35--44},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a4/}
}
V. V. Gorbatsevich. On the maximal finite-dimensional Lie algebras with given nilradical. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 35-44. http://geodesic.mathdoc.fr/item/IVM_2015_2_a4/
[1] Snobl L., “On the structure of maximal solvable extensions and of Levi extensions of nilpotent algebras”, J. Phys. A, Math. Theor., 43 (2010), 505202, 21 pp. | DOI | MR | Zbl
[2] Khakimdjanov Yu., “Varieties of Lie algebra laws”, Handbook of algebra, v. 2, Elsevier, 2000, 509–541 | DOI | MR
[3] Gorbatsevich V. V., “Rasscheplenie grupp Li i ego primeneniya k izucheniyu odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 43:6 (1979), 1227–1258 | MR | Zbl
[4] Onischik A. L., Khakimdzhanov Yu. B., “O polupryamykh summakh algebr Li”, Matem. zametki, 18:1 (1975), 31–40 | MR | Zbl