On approximation of multivalued mapping by algebraic polynomial with constraints
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 30-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete problem of the best uniform approximation of multivalued mapping by segment images by an algebraic polynomial with constraints upon the value of the approximating polynomial in several nodes of a grid. We establish a criterion of optimality of the solution, which is a generalization of the P. L. Chebyshev's alternance.
Keywords: multivalued mapping, approximating polynomial, alternance optimality conditions.
@article{IVM_2015_2_a3,
     author = {I. Yu. Vygodchikova},
     title = {On approximation of multivalued mapping by algebraic polynomial with constraints},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--34},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a3/}
}
TY  - JOUR
AU  - I. Yu. Vygodchikova
TI  - On approximation of multivalued mapping by algebraic polynomial with constraints
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 30
EP  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a3/
LA  - ru
ID  - IVM_2015_2_a3
ER  - 
%0 Journal Article
%A I. Yu. Vygodchikova
%T On approximation of multivalued mapping by algebraic polynomial with constraints
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 30-34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a3/
%G ru
%F IVM_2015_2_a3
I. Yu. Vygodchikova. On approximation of multivalued mapping by algebraic polynomial with constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 30-34. http://geodesic.mathdoc.fr/item/IVM_2015_2_a3/