Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 10-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the applicability criteria of the projection method to multidimensional integral operators with homogeneous kernels perturbed by operators of one-sided multiplicative shifts.
Keywords: integral operator, homogeneous kernel, multiplicative shift, projection method, spherical harmonics.
@article{IVM_2015_2_a1,
     author = {O. G. Avsyankin},
     title = {Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--17},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a1/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 10
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a1/
LA  - ru
ID  - IVM_2015_2_a1
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 10-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a1/
%G ru
%F IVM_2015_2_a1
O. G. Avsyankin. Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2015_2_a1/

[1] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl

[2] Avsyankin O. G., Karapetyants N. K., “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 75:2 (2004), 163–172 | DOI | MR | Zbl

[3] Avsyankin O. G., “O neterovosti mnogomernykh integralnykh operatorov s odnorodnymi i kvaziodnorodnymi yadrami”, Izv. vuzov. Matem., 2006, no. 11, 3–10 | MR

[4] Avsyankin O. G., “O spektrakh i singulyarnykh znacheniyakh mnogomernykh integralnykh operatorov s biodnorodnymi yadrami”, Sib. matem. zhurn., 49:3 (2008), 490–496 | MR | Zbl

[5] Avsyankin O. G., “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl

[6] Avsyankin O. G., “O mnogomernykh integralnykh operatorakh s odnorodnymi yadrami, vozmuschennykh operatorami odnostoronnego multiplikativnogo sdviga”, Vladikavkazsk. matem. zhurn., 15:1 (2013), 5–13 | MR

[7] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[8] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer-Verlag, Berlin–Heidelberg–New York, 1990 | MR | Zbl

[9] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984 | MR | Zbl