An estimate of spectral radius of one singular integral operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find the spectral radius of an integral operator which is a generalization of the Cesaro operator.
Keywords: Cesaro operator, functional-differential equations.
Mots-clés : singular equations
@article{IVM_2015_2_a0,
     author = {A. R. Abdullaev and I. M. Plaksina},
     title = {An estimate of spectral radius of one singular integral operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/}
}
TY  - JOUR
AU  - A. R. Abdullaev
AU  - I. M. Plaksina
TI  - An estimate of spectral radius of one singular integral operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/
LA  - ru
ID  - IVM_2015_2_a0
ER  - 
%0 Journal Article
%A A. R. Abdullaev
%A I. M. Plaksina
%T An estimate of spectral radius of one singular integral operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/
%G ru
%F IVM_2015_2_a0
A. R. Abdullaev; I. M. Plaksina. An estimate of spectral radius of one singular integral operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/