An estimate of spectral radius of one singular integral operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find the spectral radius of an integral operator which is a generalization of the Cesaro operator.
Keywords: Cesaro operator, functional-differential equations.
Mots-clés : singular equations
@article{IVM_2015_2_a0,
     author = {A. R. Abdullaev and I. M. Plaksina},
     title = {An estimate of spectral radius of one singular integral operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/}
}
TY  - JOUR
AU  - A. R. Abdullaev
AU  - I. M. Plaksina
TI  - An estimate of spectral radius of one singular integral operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/
LA  - ru
ID  - IVM_2015_2_a0
ER  - 
%0 Journal Article
%A A. R. Abdullaev
%A I. M. Plaksina
%T An estimate of spectral radius of one singular integral operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/
%G ru
%F IVM_2015_2_a0
A. R. Abdullaev; I. M. Plaksina. An estimate of spectral radius of one singular integral operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/

[1] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Zinantne, Riga, 1978 | MR | Zbl

[2] Parter S. V., Stein M. L., Stein P. S., “On the multiplicity of solutions of a differential equation arising in chemical reactor theory”, Stud. Appl. Math., 54:4 (1975), 293–314 | MR | Zbl

[3] Williams L. R., Leggett R. W., “Multiple fixed point theorems for problems in chemical reactor theory”, J. Math. Anal. and Appl., 69 (1979), 180–193 | DOI | MR | Zbl

[4] Kiguradze I. T., Shekhter B. D., “Singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Ser. Sovremen. probl. matem. Novye dostizheniya, 30, 1987, 105–201 | MR | Zbl

[5] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issledovanii, M., 2002

[6] Abdullaev A. R., “O razreshimosti zadachi Koshi dlya singulyarnogo uravneniya vtorogo poryadka v kriticheskom sluchae”, Tr. in-ta prikl. matem. im. I. N. Vekua, 37, 1990, 5–12 | MR | Zbl

[7] Azbelev N. V., Alvesh M. Zh., Bravyi E. I., “O singulyarnoi kraevoi zadache dlya lineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1999, no. 2, 3–11 | MR | Zbl

[8] Plaksina I. M., “Ob odnoi modelnoi singulyarnoi zadache”, Vestn. Permsk. un-ta. Matem. Mekhan. Informatika, 2010, no. 1, 19–23

[9] Plaksina I. M., “Ob odnom singulyarnom lineinom funktsionalno-differentsialnom uravnenii”, Izv. vuzov. Matem., 2012, no. 2, 92–96 | MR | Zbl

[10] Plaksina I. M., “O polozhitelnosti funktsii Koshi singulyarnogo lineinogo funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 2013, no. 10, 16–23 | MR | Zbl

[11] Kungurtseva A. V., “Ob odnom klasse kraevykh zadach dlya singulyarnykh uravnenii”, Izv. vuzov. Matem., 1995, no. 9, 30–36 | MR | Zbl

[12] Plekhova E. V., “Razreshimost zadachi Koshi dlya singulyarnogo differentsialnogo uravneniya”, Vestn. PGTU. Prikl. matem. i mekhan., 2011, no. 9, 177–182

[13] Abdullaev A. R., Plekhova E. V., “O spektre operatora Chezaro”, Nauchno-tekhnich. vestn. Povolzhya, 2011, no. 4, 33–37

[14] Agarwal R. P., O'Regan D., Zernov A. E., “A singular initial value problem for some functional differential equations”, J. Appl. Math. and Stochastic Anal., 2004:3 (2004), 261–270 | DOI | Zbl

[15] Pelyukh G. P., Belskii D. V., “Ob asimptoticheskikh svoistvakh reshenii differentsialno-funktsionalnykh uravnenii s lineino preobrazovannym argumentom”, Neliniini kolivannya, 10:1 (2007), 144–160 | MR | Zbl

[16] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, GIIL, M., 1948

[17] Muntean I., “The spectrum of the Cesaro operator”, Mathematica. Revue d'analyse numerique et de theorie de l'approximation, 22:1 (1980), 97–105 | MR | Zbl

[18] Rhoades B. E., “Norm and spectral properties of some weighted mean operators”, Mathematica. Revue d'analyse numerique et de theorie de l'approximation, 26:2 (1984), 143–152 | MR | Zbl

[19] Khalmosh P., Sander V., Ogranichennye integralnye operatory v prostranstvakh $L^2$, Nauka, M., 1985 | MR

[20] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR

[21] Abdullaev A. R., Plaksina I. M., “Ob odnom metode otsenki norm singulyarnykh integralnykh operatorov”, Vestn. Permsk. un-ta. Matem. Mekhan. Informatika, 2013, no. 2, 5–8