Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_2_a0, author = {A. R. Abdullaev and I. M. Plaksina}, title = {An estimate of spectral radius of one singular integral operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--9}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/} }
A. R. Abdullaev; I. M. Plaksina. An estimate of spectral radius of one singular integral operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2015_2_a0/
[1] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Zinantne, Riga, 1978 | MR | Zbl
[2] Parter S. V., Stein M. L., Stein P. S., “On the multiplicity of solutions of a differential equation arising in chemical reactor theory”, Stud. Appl. Math., 54:4 (1975), 293–314 | MR | Zbl
[3] Williams L. R., Leggett R. W., “Multiple fixed point theorems for problems in chemical reactor theory”, J. Math. Anal. and Appl., 69 (1979), 180–193 | DOI | MR | Zbl
[4] Kiguradze I. T., Shekhter B. D., “Singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Ser. Sovremen. probl. matem. Novye dostizheniya, 30, 1987, 105–201 | MR | Zbl
[5] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issledovanii, M., 2002
[6] Abdullaev A. R., “O razreshimosti zadachi Koshi dlya singulyarnogo uravneniya vtorogo poryadka v kriticheskom sluchae”, Tr. in-ta prikl. matem. im. I. N. Vekua, 37, 1990, 5–12 | MR | Zbl
[7] Azbelev N. V., Alvesh M. Zh., Bravyi E. I., “O singulyarnoi kraevoi zadache dlya lineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1999, no. 2, 3–11 | MR | Zbl
[8] Plaksina I. M., “Ob odnoi modelnoi singulyarnoi zadache”, Vestn. Permsk. un-ta. Matem. Mekhan. Informatika, 2010, no. 1, 19–23
[9] Plaksina I. M., “Ob odnom singulyarnom lineinom funktsionalno-differentsialnom uravnenii”, Izv. vuzov. Matem., 2012, no. 2, 92–96 | MR | Zbl
[10] Plaksina I. M., “O polozhitelnosti funktsii Koshi singulyarnogo lineinogo funktsionalno-differentsialnogo uravneniya”, Izv. vuzov. Matem., 2013, no. 10, 16–23 | MR | Zbl
[11] Kungurtseva A. V., “Ob odnom klasse kraevykh zadach dlya singulyarnykh uravnenii”, Izv. vuzov. Matem., 1995, no. 9, 30–36 | MR | Zbl
[12] Plekhova E. V., “Razreshimost zadachi Koshi dlya singulyarnogo differentsialnogo uravneniya”, Vestn. PGTU. Prikl. matem. i mekhan., 2011, no. 9, 177–182
[13] Abdullaev A. R., Plekhova E. V., “O spektre operatora Chezaro”, Nauchno-tekhnich. vestn. Povolzhya, 2011, no. 4, 33–37
[14] Agarwal R. P., O'Regan D., Zernov A. E., “A singular initial value problem for some functional differential equations”, J. Appl. Math. and Stochastic Anal., 2004:3 (2004), 261–270 | DOI | Zbl
[15] Pelyukh G. P., Belskii D. V., “Ob asimptoticheskikh svoistvakh reshenii differentsialno-funktsionalnykh uravnenii s lineino preobrazovannym argumentom”, Neliniini kolivannya, 10:1 (2007), 144–160 | MR | Zbl
[16] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, GIIL, M., 1948
[17] Muntean I., “The spectrum of the Cesaro operator”, Mathematica. Revue d'analyse numerique et de theorie de l'approximation, 22:1 (1980), 97–105 | MR | Zbl
[18] Rhoades B. E., “Norm and spectral properties of some weighted mean operators”, Mathematica. Revue d'analyse numerique et de theorie de l'approximation, 26:2 (1984), 143–152 | MR | Zbl
[19] Khalmosh P., Sander V., Ogranichennye integralnye operatory v prostranstvakh $L^2$, Nauka, M., 1985 | MR
[20] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR
[21] Abdullaev A. R., Plaksina I. M., “Ob odnom metode otsenki norm singulyarnykh integralnykh operatorov”, Vestn. Permsk. un-ta. Matem. Mekhan. Informatika, 2013, no. 2, 5–8