Resolving operators of degenerate evolution equations with fractional derivative with respect to time
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 71-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider resolving operators of a fractional linear differential equation in a Banach space with a degenerate operator under the derivative. Under the assumption of relative $p$-boundedness of a pair of operators in this equation, we find the form of resolving operators and study their properties. It is shown that solution trajectories of the equation fill up a subspace of a Banach space. We obtain necessary and sufficient conditions for relative $p$-boundedness of a pair of operators in terms of families of resolving operators for degenerate fractional differential equation. Abstract results are illustrated by examples of the Cauchy problem for degenerate finite-dimensional system of fractional differential equations and of initial boundary-value problem for a fractional equation with respect to the time containing polynomials of Laplace operators with respect to spatial variables.
Keywords: fractional differential equation, degenerate evolution equation, family of resolving operators, phase space, initial boundary value problem.
@article{IVM_2015_1_a5,
     author = {V. E. Fedorov and D. M. Gordievskikh},
     title = {Resolving operators of degenerate evolution equations with fractional derivative with respect to time},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--83},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a5/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - D. M. Gordievskikh
TI  - Resolving operators of degenerate evolution equations with fractional derivative with respect to time
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 71
EP  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_1_a5/
LA  - ru
ID  - IVM_2015_1_a5
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A D. M. Gordievskikh
%T Resolving operators of degenerate evolution equations with fractional derivative with respect to time
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 71-83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_1_a5/
%G ru
%F IVM_2015_1_a5
V. E. Fedorov; D. M. Gordievskikh. Resolving operators of degenerate evolution equations with fractional derivative with respect to time. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 71-83. http://geodesic.mathdoc.fr/item/IVM_2015_1_a5/

[1] Bajlekova E. G., Fractional evolution equations in Banach spaces, PhD Thesis, Eindhoven University of Technology, University Press Facilities, 2001 | MR | Zbl

[2] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, OPA, Amsterdam, 1993 | MR

[3] Podlubny I., Fractional differential equations, Academic Press, San Diego–Boston, 1999 | MR | Zbl

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl

[5] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker Inc., New York–Basel–Hong Kong, 1999 | MR | Zbl

[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[7] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[8] Tarasov V. E., Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer, New York, 2011 | MR | Zbl

[9] Balachandran K., Kiruthika S., “Existence of solutions of abstract fractional integrodifferential equations of Sobolev type”, Comput. Math. Appl., 64:10 (2012), 3406–3413 | DOI | MR | Zbl

[10] Li F., Liang J., Xu H.-K., “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, J. Math. Anal. Appl., 391:2 (2012), 510–525 | DOI | Zbl

[11] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston, 2003 | MR | Zbl