Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_1_a4, author = {I. V. Usimov}, title = {Algebras of the equivariant cohomologies of an $\mathfrak F$-classifying $T^k$-spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--70}, publisher = {mathdoc}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a4/} }
I. V. Usimov. Algebras of the equivariant cohomologies of an $\mathfrak F$-classifying $T^k$-spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 60-70. http://geodesic.mathdoc.fr/item/IVM_2015_1_a4/
[1] Ageev S. M., Repovsh D., “Zadacha o rasprostranenii nakryvayuschei gomotopii dlya kompaktnykh grupp preobrazovanii”, Matem zametki, 92:6 (2012), 803–818 | DOI | MR | Zbl
[2] Palais R., The classification of $G$-spaces, Mem. Amer. Math. Soc., 36, 1960 | MR | Zbl
[3] Ageev S. M., “Universalnye $G$-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Matem. sb., 203:6 (2012), 3–34 | DOI | MR | Zbl
[4] Ageev S. M., “Izovariantnye ekstenzory i kharakterizatsiya ekvivariantnykh gomotopicheskikh ekvivalentnostei”, Izv. RAN. Ser. matem., 76:5 (2012), 3–28 | DOI | MR | Zbl
[5] Syan U. I., Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 | MR
[6] Ageev S. M., Usimov I. V., “The cohomology ring of subspace of universal $S^1$-space with finite orbit types”, Topology Appl., 160:11 (2013), 1255–1260 | DOI | MR | Zbl
[7] Bredon G. E., Equivariant cohomology theories, Lecture Notes in Math., 34, Springer-Verlag, Berlin–New York, 1967 | MR
[8] Fomenko A. T., Fuks D. V., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[9] Morris S., Dvoistvennost Pontryagina i stroenie lokalno kompaktnykh abelevykh grupp, Mir, M., 1980 | MR | Zbl
[10] Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR