Use of finite-dimensional approximations in a~problem of stabilization of periodic systems with aftereffect
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 29-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stabilization problem for linear periodic system of differential equations with aftereffect. Approximating systems are described by differential equations with finite-dimensional Volterra operators. We construct admissible controls by feedback principle in a class of piecewise continuous functions. We obtain a relation between approximating problem of stabilization and a problem of optimal stabilization of autonomous linear system of difference equations.
Keywords: stabilization, systems of linear periodic differential equations with aftereffect, approximating operators, feedback control.
@article{IVM_2015_1_a2,
     author = {Yu. F. Dolgii and E. V. Koshkin},
     title = {Use of finite-dimensional approximations in a~problem of stabilization of periodic systems with aftereffect},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--45},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a2/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - E. V. Koshkin
TI  - Use of finite-dimensional approximations in a~problem of stabilization of periodic systems with aftereffect
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 29
EP  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_1_a2/
LA  - ru
ID  - IVM_2015_1_a2
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A E. V. Koshkin
%T Use of finite-dimensional approximations in a~problem of stabilization of periodic systems with aftereffect
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 29-45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_1_a2/
%G ru
%F IVM_2015_1_a2
Yu. F. Dolgii; E. V. Koshkin. Use of finite-dimensional approximations in a~problem of stabilization of periodic systems with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 29-45. http://geodesic.mathdoc.fr/item/IVM_2015_1_a2/

[1] Krasovskii N. N., “Ob analiticheskom konstruirovanii regulyatora v sisteme s zapazdyvaniem vremeni”, PMM, 26:3 (1962), 39–51 | MR

[2] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s posledeistviem”, Differents. uravneniya, 1:1 (1965), 102–116 | Zbl

[3] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR | Zbl

[4] Markushin E. M., Shimanov S. N., “Priblizhennoe reshenie zadachi analiticheskogo regulyatora dlya sistem s zapazdyvaniem”, Differents. uravneniya, 2:8 (1966), 1018–1026 | Zbl

[5] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, PMM, 28:4 (1964), 716–724 | MR

[6] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami i zapazdyvaniem vremeni”, PMM, 27:3 (1963), 450–458 | MR | Zbl

[7] Krasovskii N. N., Osipov Yu. S., “O stabilizatsii dvizheniya upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1963, no. 6, 3–15 | MR | Zbl

[8] Shabalin M. N., Shimanov S. N., “Zadacha Letova dlya upravleniya s zapazdyvaniem vremeni i periodicheskimi koeffitsientami”, Ustoichivost i nelineinye kolebaniya, Sb. nauch. tr., Izd-vo Ural. gos. un-ta, Sverdlovsk, 1984, 89–106 | MR

[9] Dolgii Yu. F., Koshkin E. V., “Optimalnaya stabilizatsiya lineinykh periodicheskikh konechnomernykh sistem differentsialnykh uravnenii s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 87–98

[10] Gopalsamy K., Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic Publishers, Dortrecht, 1992 | MR | Zbl

[11] Cooke K. L., Wiener J., “Retarded differential equations with piecewise constant delays”, J. Math. Anal. Appl., 99:1 (1984), 265–297 | DOI | MR | Zbl

[12] Alonso A., Hong J., Rojo J., “A class of ergodic solution of differential equations with piecewise constant arguments”, Dyn. Syst. Appl., 7:4 (1998), 561–574 | MR

[13] Dolgii Yu. F., Koshkin E. V., “Optimalnaya stabilizatsiya dinamicheskikh protsessov v periodicheskikh lineinykh sistemakh differentsialnykh uravnenii s kusochno-postoyannymi argumentami”, Probl. dinamicheskogo upravleniya, Sb. nauch. tr. f-ta VMK MGU im. M. V. Lomonosova, 5, 2010, 102–112

[14] Azbelev N. I., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issled., M., 2002

[15] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh prilozhenii k nekotorym zadacham matematicheskoi fiziki”, Byul. MGU. Sekts. A, 1:8 (1938), 1–25

[16] Kantorovich L. V., Akimov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[17] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[18] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[19] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[20] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[21] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, M., 1977

[22] Furasov V. D., Ustoichivost i stabilizatsiya diskretnykh protsessov, Nauka, M., 1982 | MR | Zbl

[23] Laub A. J., “A Schur method for solving algebraic Riccati equations”, IEEE Trans. on Automat. Control, 24:6 (1979), 913–921 | DOI | MR | Zbl

[24] Ikramov X. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR | Zbl