Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a convolution operator in spaces of holomorphic functions in a convex domain of the complex plane with polynomial growth at a boundary. We proved that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inverse operator.
Keywords: holomorphic function, polynomial growth, convolution operator, linear continuous right/left inverse operator.
@article{IVM_2015_1_a0,
     author = {A. V. Abanin and Le Hai Khoi},
     title = {Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - Le Hai Khoi
TI  - Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/
LA  - ru
ID  - IVM_2015_1_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%A Le Hai Khoi
%T Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/
%G ru
%F IVM_2015_1_a0
A. V. Abanin; Le Hai Khoi. Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/