Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a convolution operator in spaces of holomorphic functions in a convex domain of the complex plane with polynomial growth at a boundary. We proved that if this operator is surjective on the class of all bounded convex domains, then it always has a linear continuous right inverse operator.
Keywords:
holomorphic function, polynomial growth, convolution operator, linear continuous right/left inverse operator.
@article{IVM_2015_1_a0,
author = {A. V. Abanin and Le Hai Khoi},
title = {Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--13},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/}
}
TY - JOUR AU - A. V. Abanin AU - Le Hai Khoi TI - Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 3 EP - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/ LA - ru ID - IVM_2015_1_a0 ER -
%0 Journal Article %A A. V. Abanin %A Le Hai Khoi %T Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 3-13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/ %G ru %F IVM_2015_1_a0
A. V. Abanin; Le Hai Khoi. Linear continuous right inverse operator for convolution operator in spaces of holomorphic functions of polynomial growth. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2015_1_a0/