Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 43-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the system of two equations of elliptic type with two nonlinearities depending on the sum of squares of sought-for functions. We obtain conditions on nonlinearities with which the system is reduced to one equation. We also find parametric families of exact solutions, both radially symmetric, and anisotropic with respect to spatial variables, described by elementary or harmonic functions. In case of controlled nonlinearity we specify wide class of realizable exact solutions expressed via harmonic functions.
Mots-clés :
equations of elliptic type, exact solutions.
Keywords: nonlinear systems
Keywords: nonlinear systems
@article{IVM_2015_12_a3,
author = {A. A. Kosov and E. I. Semyonov},
title = {Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {43--54},
publisher = {mathdoc},
number = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/}
}
TY - JOUR AU - A. A. Kosov AU - E. I. Semyonov TI - Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 43 EP - 54 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/ LA - ru ID - IVM_2015_12_a3 ER -
%0 Journal Article %A A. A. Kosov %A E. I. Semyonov %T Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 43-54 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/ %G ru %F IVM_2015_12_a3
A. A. Kosov; E. I. Semyonov. Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 43-54. http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/