Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the system of two equations of elliptic type with two nonlinearities depending on the sum of squares of sought-for functions. We obtain conditions on nonlinearities with which the system is reduced to one equation. We also find parametric families of exact solutions, both radially symmetric, and anisotropic with respect to spatial variables, described by elementary or harmonic functions. In case of controlled nonlinearity we specify wide class of realizable exact solutions expressed via harmonic functions.
Mots-clés : equations of elliptic type, exact solutions.
Keywords: nonlinear systems
@article{IVM_2015_12_a3,
     author = {A. A. Kosov and E. I. Semyonov},
     title = {Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--54},
     publisher = {mathdoc},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semyonov
TI  - Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 43
EP  - 54
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/
LA  - ru
ID  - IVM_2015_12_a3
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semyonov
%T Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 43-54
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/
%G ru
%F IVM_2015_12_a3
A. A. Kosov; E. I. Semyonov. Exact radially-symmetric solutions of a~class of nonlinear elliptic systems of equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 43-54. http://geodesic.mathdoc.fr/item/IVM_2015_12_a3/

[1] Drivotin O. I., Ovsyannikov D. A., Modelirovanie intensivnykh puchkov zaryazhennykh chastits, Izd-vo S.-Peterb. gos. un-ta, SPb., 2003

[2] Vedenyapin V., Sinitsyn A., Dulov E., Kinetic Boltzmann–Vlasov and related equations, Elsevier, Amsterdam, 2011 | MR | Zbl

[3] Drivotin O. I., Ovsyannikov D. A., “Resheniya uravneniya Vlasova dlya puchka zaryazhennykh chastits v magnitnom pole”, Izv. IGU. Ser. Matem., 6:4 (2013), 2–22 | Zbl

[4] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: Tochnye resheniya, FIZMATLIT, M., 2002 | MR

[5] Ben Abdallah N., Degond P., Mehats F., “Mathematical model of magnetic insulation”, Physics of plasmas, 5 (1998), 1522–1534 | DOI | MR

[6] http://eqworld.ipmnet.ru/ru/solutions/syspde/spde3107.pdf

[7] Pukhnachev V. V., “Tochnye resheniya uravnenii dvizheniya neszhimaemoi vyazkouprugoi sredy Maksvella”, PMTF, 50:2 (2009), 16–23 | MR

[8] Ibragimov N. Kh., Rudenko O. V., “Printsip apriornogo ispolzovaniya simmetrii v teorii nelineinykh voln”, Akusticheskii zhurnal, 50:4 (2004), 1–15

[9] Vyazmina E. A., Polyanin A. D., “Novye klassy tochnykh reshenii nelineinykh diffuzionno-kineticheskikh uravnenii i sistem obschego vida”, Teor. osnovy khimicheskoi tekhnologii, 40:6 (2006), 1–10