Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_12_a0, author = {K. M. Budanov and A. Ya. Sultanov}, title = {Infinitesimal affine transformations of {a~Weil} bundle of the second order with the complete lift connection}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--13}, publisher = {mathdoc}, number = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/} }
TY - JOUR AU - K. M. Budanov AU - A. Ya. Sultanov TI - Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 3 EP - 13 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/ LA - ru ID - IVM_2015_12_a0 ER -
%0 Journal Article %A K. M. Budanov %A A. Ya. Sultanov %T Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 3-13 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/ %G ru %F IVM_2015_12_a0
K. M. Budanov; A. Ya. Sultanov. Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/
[1] Egorov I. P., Dvizheniya v prostranstvakh affinnoi svyaznosti, Uchen. zap. Kazansk. un-ta, Kazan, 1965 | MR
[2] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Different. Geom., 11:4 (1976), 479–498 | MR | Zbl
[3] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1985 | MR
[4] Budanov K. M., “Lifty funktsii i vektornykh polei v rassloenie Veilya nad algebroi Veilya vysoty 2”, Differents. geom. mnogoobrazii figur, Mezhvuz. temat. sb. nauchn. trudov, 37, Izd-vo RGU im. I. Kanta, Kaliningrad, 2006, 19–23 | MR
[5] Budanov K. M., “O liftakh tenzornykh polei tipa $(1,1)$ v rassloenie Veilya nad spetsialnoi algebroi Veilya”, Izv. Penzensk. gos. pedagogich. un-ta. Fiz.-matem. i tekhn. nauki, 2012, no. 30, 28–32
[6] Budanov K. M., “Lifty lineinoi svyaznosti i funktsii v rassloenie Veilya nad spetsialnoi algebroi Veilya”, Differents. geom. mnogoobrazii figur, Mezhvuz. temat. sb. nauchn. trudov, 38, Izd-vo RGU im. I. Kanta, Kaliningrad, 2007, 12–16 | MR
[7] Sultanov A. Ya., “Prodolzheniya tenzornykh polei i svyaznostei v rassloeniya Veilya”, Izv. vuzov. Matem., 1999, no. 9, 64–72 | MR | Zbl