Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the canonical expansion of an arbitrary infinitesimal affine transformation of a Weil bundle of the second order over a differentiable manifold with the complete lift connection. We establish necessary and sufficient conditions under which a vector field is an infinitesimal affine transformation.
Keywords: Weil bundle of the second order, linear connection, complete lift of linear connection
Mots-clés : infinitesimal affine transformation.
@article{IVM_2015_12_a0,
     author = {K. M. Budanov and A. Ya. Sultanov},
     title = {Infinitesimal affine transformations of {a~Weil} bundle of the second order with the complete lift connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/}
}
TY  - JOUR
AU  - K. M. Budanov
AU  - A. Ya. Sultanov
TI  - Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 13
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/
LA  - ru
ID  - IVM_2015_12_a0
ER  - 
%0 Journal Article
%A K. M. Budanov
%A A. Ya. Sultanov
%T Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-13
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/
%G ru
%F IVM_2015_12_a0
K. M. Budanov; A. Ya. Sultanov. Infinitesimal affine transformations of a~Weil bundle of the second order with the complete lift connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2015_12_a0/

[1] Egorov I. P., Dvizheniya v prostranstvakh affinnoi svyaznosti, Uchen. zap. Kazansk. un-ta, Kazan, 1965 | MR

[2] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Different. Geom., 11:4 (1976), 479–498 | MR | Zbl

[3] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1985 | MR

[4] Budanov K. M., “Lifty funktsii i vektornykh polei v rassloenie Veilya nad algebroi Veilya vysoty 2”, Differents. geom. mnogoobrazii figur, Mezhvuz. temat. sb. nauchn. trudov, 37, Izd-vo RGU im. I. Kanta, Kaliningrad, 2006, 19–23 | MR

[5] Budanov K. M., “O liftakh tenzornykh polei tipa $(1,1)$ v rassloenie Veilya nad spetsialnoi algebroi Veilya”, Izv. Penzensk. gos. pedagogich. un-ta. Fiz.-matem. i tekhn. nauki, 2012, no. 30, 28–32

[6] Budanov K. M., “Lifty lineinoi svyaznosti i funktsii v rassloenie Veilya nad spetsialnoi algebroi Veilya”, Differents. geom. mnogoobrazii figur, Mezhvuz. temat. sb. nauchn. trudov, 38, Izd-vo RGU im. I. Kanta, Kaliningrad, 2007, 12–16 | MR

[7] Sultanov A. Ya., “Prodolzheniya tenzornykh polei i svyaznostei v rassloeniya Veilya”, Izv. vuzov. Matem., 1999, no. 9, 64–72 | MR | Zbl