Noncommutative vector-valued symmetric Hardy spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 87-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce noncommutative vector-valued symmetric Hardy spaces and demonstrate that they are quasi-Banach ones. For these spaces we prove analogs of some basic properties of the Hardy space.
Keywords: von Neumann algebra, subdiagonal algebra, noncommutative vector valued symmetric Hardy space, conditional expectation.
@article{IVM_2015_11_a8,
     author = {K. S. Tulenov},
     title = {Noncommutative vector-valued symmetric {Hardy} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--93},
     publisher = {mathdoc},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a8/}
}
TY  - JOUR
AU  - K. S. Tulenov
TI  - Noncommutative vector-valued symmetric Hardy spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 87
EP  - 93
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_11_a8/
LA  - ru
ID  - IVM_2015_11_a8
ER  - 
%0 Journal Article
%A K. S. Tulenov
%T Noncommutative vector-valued symmetric Hardy spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 87-93
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_11_a8/
%G ru
%F IVM_2015_11_a8
K. S. Tulenov. Noncommutative vector-valued symmetric Hardy spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 87-93. http://geodesic.mathdoc.fr/item/IVM_2015_11_a8/

[1] Marsalli M., West G., “Noncommutative $H^p$ spaces”, J. Operator Theory, 40:2 (1998), 339–355 | MR | Zbl

[2] Exel R., “Maximal subdiagonal algebras”, Amer. J. Math., 110:4 (1988), 775–782 | DOI | MR | Zbl

[3] Pisier G., Xu Q., “Noncommutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, v. 2, 2003, 1459–1517 | DOI | MR | Zbl

[4] Arveson W. B., “Analyticity in operator algebras”, Amer. J. Math., 89 (1967), 578–642 | DOI | MR | Zbl

[5] Skvortsova G. Sh., “O slaboi sekventsialnoi polnote faktorprostranstv prostranstva integriruemykh operatorov”, Izv. vuzov. Matem., 2002, no. 9, 71–74 | MR | Zbl

[6] Blecher D. P., Labuschagne L. E., “Characterization of noncommutative $H^\infty$”, Integral Equations Operator Theory, 56:3 (2006), 301–321 | DOI | MR | Zbl

[7] Blecher D. P., Labuschagne L. E., “A Beurling theorem for noncommutative $L_p$”, J. Operator Theory, 59:1 (2008), 29–51 | MR | Zbl

[8] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[9] Dodds P. G., Dodds T. K., de Pagter B., “Noncommutative Banach function spaces”, Math. Z., 201:4 (1989), 583–587 | DOI | MR

[10] Xu Q., “Analytic functions with values in lattices and symmetric spaces of measurable operators”, Math. Proc. Cambr. Phil. Soc., 109:3 (1991), 541–563 | DOI | MR | Zbl

[11] Lindentrauss J., Tzafriri L., Classical Banach space, v. II, Springer-Verlag, Berlin, 1979

[12] Bekjan T. N., “Noncommutative symmetric Hardy spaces”, Integral Equations Operator Theory, 81:2 (2015), 191–212 | DOI | MR | Zbl

[13] Pisier G., Non-commutative vector valued $L^p$-spaces and completely $p$-summing maps, Astérisque, 247, 1998 | MR

[14] Junge M., “Doobs inequality for non-commutative martingales”, J. Reine Angew. Math., 549 (2002), 149–190 | MR | Zbl

[15] Junge M., Xu Q., “Noncommutative maximal ergodic theorems”, J. Amer. Math. Soc., 20:2 (2007), 385–439 | DOI | MR | Zbl

[16] Bekjan T. N., Tulenov K., Dauitbek D., “The noncommutative $H_p^{(r,s)}(\mathcal A;\ell_\infty)$ and $H_p(\mathcal A;\ell_\infty)$ spaces”, Positivity | DOI

[17] Defant A., “Classical summation in commutative and noncommutative $L_p$-spaces”, Lecture Notes in Math., 2021, Springer-Verlag, Berlin, 2011, 80–95 | MR

[18] Dirksen Sjoerd, Noncommutative Boyd interpolation theorems, arXiv: 1203.1653v2 | MR

[19] Defant A., Junge M., “Maximal theorems of Menchoff–Rademacher type in non-commutative $L_q$-spaces”, J. Funct. Anal., 206:2 (2004), 322–355 | DOI | MR | Zbl

[20] Bekjan T. N., Xu Q., “Riesz and Szegötype factorizations for noncommutative Hardy space”, J. Operator Theory, 62:1 (2009), 215–231 | MR | Zbl