Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_11_a8, author = {K. S. Tulenov}, title = {Noncommutative vector-valued symmetric {Hardy} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {87--93}, publisher = {mathdoc}, number = {11}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a8/} }
K. S. Tulenov. Noncommutative vector-valued symmetric Hardy spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 87-93. http://geodesic.mathdoc.fr/item/IVM_2015_11_a8/
[1] Marsalli M., West G., “Noncommutative $H^p$ spaces”, J. Operator Theory, 40:2 (1998), 339–355 | MR | Zbl
[2] Exel R., “Maximal subdiagonal algebras”, Amer. J. Math., 110:4 (1988), 775–782 | DOI | MR | Zbl
[3] Pisier G., Xu Q., “Noncommutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, v. 2, 2003, 1459–1517 | DOI | MR | Zbl
[4] Arveson W. B., “Analyticity in operator algebras”, Amer. J. Math., 89 (1967), 578–642 | DOI | MR | Zbl
[5] Skvortsova G. Sh., “O slaboi sekventsialnoi polnote faktorprostranstv prostranstva integriruemykh operatorov”, Izv. vuzov. Matem., 2002, no. 9, 71–74 | MR | Zbl
[6] Blecher D. P., Labuschagne L. E., “Characterization of noncommutative $H^\infty$”, Integral Equations Operator Theory, 56:3 (2006), 301–321 | DOI | MR | Zbl
[7] Blecher D. P., Labuschagne L. E., “A Beurling theorem for noncommutative $L_p$”, J. Operator Theory, 59:1 (2008), 29–51 | MR | Zbl
[8] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl
[9] Dodds P. G., Dodds T. K., de Pagter B., “Noncommutative Banach function spaces”, Math. Z., 201:4 (1989), 583–587 | DOI | MR
[10] Xu Q., “Analytic functions with values in lattices and symmetric spaces of measurable operators”, Math. Proc. Cambr. Phil. Soc., 109:3 (1991), 541–563 | DOI | MR | Zbl
[11] Lindentrauss J., Tzafriri L., Classical Banach space, v. II, Springer-Verlag, Berlin, 1979
[12] Bekjan T. N., “Noncommutative symmetric Hardy spaces”, Integral Equations Operator Theory, 81:2 (2015), 191–212 | DOI | MR | Zbl
[13] Pisier G., Non-commutative vector valued $L^p$-spaces and completely $p$-summing maps, Astérisque, 247, 1998 | MR
[14] Junge M., “Doobs inequality for non-commutative martingales”, J. Reine Angew. Math., 549 (2002), 149–190 | MR | Zbl
[15] Junge M., Xu Q., “Noncommutative maximal ergodic theorems”, J. Amer. Math. Soc., 20:2 (2007), 385–439 | DOI | MR | Zbl
[16] Bekjan T. N., Tulenov K., Dauitbek D., “The noncommutative $H_p^{(r,s)}(\mathcal A;\ell_\infty)$ and $H_p(\mathcal A;\ell_\infty)$ spaces”, Positivity | DOI
[17] Defant A., “Classical summation in commutative and noncommutative $L_p$-spaces”, Lecture Notes in Math., 2021, Springer-Verlag, Berlin, 2011, 80–95 | MR
[18] Dirksen Sjoerd, Noncommutative Boyd interpolation theorems, arXiv: 1203.1653v2 | MR
[19] Defant A., Junge M., “Maximal theorems of Menchoff–Rademacher type in non-commutative $L_q$-spaces”, J. Funct. Anal., 206:2 (2004), 322–355 | DOI | MR | Zbl
[20] Bekjan T. N., Xu Q., “Riesz and Szegötype factorizations for noncommutative Hardy space”, J. Operator Theory, 62:1 (2009), 215–231 | MR | Zbl