On minimization of cavitational resistance of hydroprofile
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for profiles flowed according to the Helmholtz–Kirchhoff scheme with infinite cavern, we investigate values of coefficients of levitation force and of resistance related to a length of washed part of the profile. Under given value of coefficient of levitation force and additional restrictions from above and below on a distribution of a speed on a surface of a profile we find global minimum of coefficient of resistance.
Keywords: extremal problem, ideal fluid, Helmholtz–Kirchhoff scheme, cavitation flow.
@article{IVM_2015_11_a7,
     author = {I. R. Kayumov and D. V. Maklakov},
     title = {On minimization of cavitational resistance of hydroprofile},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--86},
     publisher = {mathdoc},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a7/}
}
TY  - JOUR
AU  - I. R. Kayumov
AU  - D. V. Maklakov
TI  - On minimization of cavitational resistance of hydroprofile
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 80
EP  - 86
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_11_a7/
LA  - ru
ID  - IVM_2015_11_a7
ER  - 
%0 Journal Article
%A I. R. Kayumov
%A D. V. Maklakov
%T On minimization of cavitational resistance of hydroprofile
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 80-86
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_11_a7/
%G ru
%F IVM_2015_11_a7
I. R. Kayumov; D. V. Maklakov. On minimization of cavitational resistance of hydroprofile. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 80-86. http://geodesic.mathdoc.fr/item/IVM_2015_11_a7/

[1] Maklakov D. V., Kayumov I. R., “Ob odnoi nelineinoi variatsionnoi probleme teorii kavitiruyuschikh profilei”, Izv. vuzov. Matem., 2012, no. 12, 90–96 | MR | Zbl

[2] Maklakov D. V., Kayumov I. R., “Exact bounds for lift-to-drag ratios of profiles in the Helmholtz–Kirchhoff flow”, European J. Appl. Math., 25:2 (2014), 231–254 | DOI | MR | Zbl

[3] Maklakov D. V., “Analog teoremy Kutta–Zhukovskogo pri obtekanii profilya s otryvom strui”, Dokl. RAN, 441:2 (2011), 187–190 | MR

[4] Maklakov D. V., “On the lift and drag of cavitating profiles and the maximum lift and drag”, J. Fluid Mech., 687 (2011), 360–375 | DOI | MR | Zbl

[5] Maklakov D. V., “O maksimume soprotivleniya krivolineinogo prepyatstviya, obtekaemogo s otryvom strui”, DAN SSSR, 208:3 (1988), 574–577 | MR

[6] Maklakov D. V., Uglov A. N., “On the maximum drag of a curved plate in flow with a wake”, European J. Appl. Math., 6:5 (1995), 517–527 | DOI | MR | Zbl

[7] Maklakov D. V., “A note on the optimum profile of a sprayless planing surface”, J. Fluid Mech., 384 (1999), 281–292 | DOI | Zbl

[8] Maklakov D. V., “Some remarks on the exact solution for an optimal impermeable parachute problem”, J. Comput. and Appl. Math., 166:2 (2004), 591–596 | DOI | MR | Zbl

[9] Maklakov D. V., “On deflectors of optimum shape”, J. Fluid Mech., 540 (2005), 175–187 | DOI | MR | Zbl

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR