The Dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 44-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential in the rectangular area. We establish a criterion of the uniqueness of a solution to this problem. The uniqueness of a solution is proved on the basis of the completeness of systems of functions corresponding to one-dimensional spectral problem. Solution was constructed as a sum of series on the systems of eigenfunctions. The existence is proved under certain conditions upon the ratio of the rectangle sides of hyperbolic part of the equation, upon the boundary functions and function of potential.
Keywords: mixed type equation, Dirichlet problem, spectral method, uniqueness, small denominators
Mots-clés : existence.
@article{IVM_2015_11_a3,
     author = {N. V. Martem'yanova},
     title = {The {Dirichlet} problem for an equation of mixed elliptic-hyperbolic type with variable potential},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--53},
     publisher = {mathdoc},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a3/}
}
TY  - JOUR
AU  - N. V. Martem'yanova
TI  - The Dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 44
EP  - 53
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_11_a3/
LA  - ru
ID  - IVM_2015_11_a3
ER  - 
%0 Journal Article
%A N. V. Martem'yanova
%T The Dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 44-53
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_11_a3/
%G ru
%F IVM_2015_11_a3
N. V. Martem'yanova. The Dirichlet problem for an equation of mixed elliptic-hyperbolic type with variable potential. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 44-53. http://geodesic.mathdoc.fr/item/IVM_2015_11_a3/

[1] Frankl F. I., “O zadachakh Chaplygina dlya smeshannykh do- i sverkhzvukovykh techenii”, Izv. AN SSSR. Ser. matem., 9:2 (1945), 121–143 | MR | Zbl

[2] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR

[3] Bitsadze A. V., “Nekorrektnost zadachi Dirikhle dlya uravneniya smeshannogo tipa”, DAN SSSR, 122:2 (1953), 561–564

[4] Nakhushev A. M., “Kriterii edinstvennosti zadachi Dirikhle dlya uravneniya smeshannogo tipa v tsilindricheskoi oblasti”, Differents. uravneniya, 6:1 (1970), 190–191 | Zbl

[5] Zhegalov V. I., “Nelokalnaya zadacha Dirikhle dlya uravneniya smeshannogo tipa”, Neklassicheskie uravneniya matem. fiziki, IM SO AN SSSR, Novosibirsk, 1985, 168–172

[6] Soldatov A. P., “Zadacha tipa Dirikhle dlya uravneniya Lavrenteva–Bitsadze. I. Teoremy edinstvennosti”, Dokl. RAN, 332:6 (1993), 696–698 | Zbl

[7] Soldatov A. P., “Zadacha tipa Dirikhle dlya uravneniya Lavrenteva–Bitsadze. II. Teorema suschestvovaniya”, Dokl. RAN, 333:1 (1993), 16–18 | Zbl

[8] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl

[9] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2013, no. 7, 62–76 | Zbl

[10] Sabitov K. B., “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | DOI | MR | Zbl

[11] Sabitov K. B., “Nachalno-granichnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s izvestnym potentsialom”, Differentsialnye uravneniya i smezhnye problemy, Tr. mezhdun. nauchn. konf. (26–30 iyunya 2013 g., g. Sterlitamak), v 2 t., v. 1, RITs BashGU, Ufa, 2013, 244–254

[12] Smolitskii Kh. L., Predelnaya zadacha dlya volnovogo uravneniya, Diss. $\dots$ dokt. fiz.-matem. nauk, Leningr. Krasnoznam. voen.-vozdush. inzh. akad., L., 1950

[13] Ilin V. A., “Edinstvennost i prinadlezhnost $W_2^1$ klassicheskogo resheniya smeshannoi zadachi dlya samosopryazhennogo giperbolicheskogo uravneniya”, Matem. zametki, 17:1 (1975), 91–101 | MR | Zbl

[14] Ilin V. A., “Teorema o edinstvennosti i prinadlezhnosti klassu $W_2^1$ klassicheskogo resheniya smeshannoi zadachi dlya nesamosopryazhennogo giperbolicheskogo uravneniya v proizvolnom tsilindre”, Differents. uravneniya, 11:1 (1975), 60–65 | MR

[15] Levitan B. M., Sargsyan N. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[16] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR

[17] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl