The listing of topologies close to the discrete one on finite sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 23-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $T_0$-topologies on $n$-element set that contain more than $2^n$ elements. We solve a problem of listing and counting of such topologies. For this purpose we introduce the notions of an index of the topology and a vector of the topology. We study their properties and single out all possible classes of the topologies under the consideration. We formulate and prove a theorem related to the number of the topologies in each of the classes.
Keywords: topology on a finite set, $T_0$-topology, index of an element of a topology, index of a topology, vector of a topology.
@article{IVM_2015_11_a1,
     author = {I. G. Velichko and P. G. Stegantseva and N. P. Bashova},
     title = {The listing of topologies close to the discrete one on finite sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--31},
     publisher = {mathdoc},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a1/}
}
TY  - JOUR
AU  - I. G. Velichko
AU  - P. G. Stegantseva
AU  - N. P. Bashova
TI  - The listing of topologies close to the discrete one on finite sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 23
EP  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_11_a1/
LA  - ru
ID  - IVM_2015_11_a1
ER  - 
%0 Journal Article
%A I. G. Velichko
%A P. G. Stegantseva
%A N. P. Bashova
%T The listing of topologies close to the discrete one on finite sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 23-31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_11_a1/
%G ru
%F IVM_2015_11_a1
I. G. Velichko; P. G. Stegantseva; N. P. Bashova. The listing of topologies close to the discrete one on finite sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 23-31. http://geodesic.mathdoc.fr/item/IVM_2015_11_a1/

[1] Benoumhani M., “The number of topologies on a finite set”, J. Integer Sequences, 9:2 (2006), article 06.2.6 | MR | Zbl

[2] Erne M., Stege K., “Counting finite posets and topologies”, Order, 8:3 (1991), 247–265 | DOI | MR | Zbl

[3] Kolli M., “Direct and elementary approach to enumerate topologies on a finite set”, J. Integer Sequences, 10:3 (2007), article 07.3.1 | MR | Zbl

[4] Krishnamurthy V., “On the number of topologies on a finite set”, Amer. Math. Monthly, 73:2 (1966), 154–157 | DOI | MR | Zbl

[5] Stanley R., “On the number of open sets of finite topologies”, J. Combinatorial Theory, 10:1 (1971), 75–79 | DOI | MR

[6] Stephen D., “Topology on finite sets”, Amer. Math. Monthly, 75:7 (1968), 739–741 | DOI | MR | Zbl

[7] Online Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/html

[8] Adamenko N. P., Velichko I. G., “Klassifikatsiya topologii na konechnykh mnozhestvakh s pomoschyu grafov”, Ukr. matem. zhurn., 60:7 (2008), 992–996 | MR | Zbl