Inequalities of Kolmogorov's type for derived functions in two variables and application to approximation by an ``angle''
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions of two variables we obtain sharp inequalities of Kolmogorov's type for partial and mixed intermediate derivatives. We also consider applications of the results to some problems of approximation of functions of two variables by angles and obtain a series of relations which are exact in definite sense.
Keywords: Hermite polynomials, Fourier–Hermite series, inequalities of Kolmogorov's type, the best approximation by angle, generalized polynomial.
@article{IVM_2015_11_a0,
     author = {S. B. Vakarchuk and A. V. Shvachko},
     title = {Inequalities of {Kolmogorov's} type for derived functions in two variables and application to approximation by an ``angle''},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--22},
     publisher = {mathdoc},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_11_a0/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - A. V. Shvachko
TI  - Inequalities of Kolmogorov's type for derived functions in two variables and application to approximation by an ``angle''
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 22
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_11_a0/
LA  - ru
ID  - IVM_2015_11_a0
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A A. V. Shvachko
%T Inequalities of Kolmogorov's type for derived functions in two variables and application to approximation by an ``angle''
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-22
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_11_a0/
%G ru
%F IVM_2015_11_a0
S. B. Vakarchuk; A. V. Shvachko. Inequalities of Kolmogorov's type for derived functions in two variables and application to approximation by an ``angle''. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2015), pp. 3-22. http://geodesic.mathdoc.fr/item/IVM_2015_11_a0/

[1] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[2] Konovalov V. N., “Tochnye neravenstva dlya norm funktsii, tretikh chastnykh, vtorykh smeshannykh i kosykh proizvodnykh”, Matem. zametki, 23:1 (1978), 67–78 | MR | Zbl

[3] Gabushin V. N., “Nailuchshee priblizhenie funktsionalov na nekotorykh mnozhestvakh”, Matem. zametki, 8:5 (1970), 551–562 | MR | Zbl

[4] Buslaev A. P., “O priblizhenii operatora differentsirovaniya”, Matem. zametki, 29:5 (1981), 731–742 | MR | Zbl

[5] Timoshin O. A., “Nailuchshee priblizhenie operatora differentsirovaniya vtoroi smeshannoi proizvodnoi v metrikakh $L$ i $C$ na ploskosti”, Matem. zametki, 36:3 (1984), 369–375 | MR | Zbl

[6] Timofeev V. G., “Neravenstvo tipa Landau dlya funktsii neskolkikh peremennykh”, Matem. zametki, 37:5 (1985), 676–689 | MR | Zbl

[7] Berdnikova I. V., Rafalson S. Z., “Nekotorye neravesntva mezhdu normami funktsii i ee proizvodnykh v integralnykh metrikakh”, Izv. vuzov. Matem., 1985, no. 12, 3–6 | MR | Zbl

[8] Rafalson S. Z., “O priblizhenii funktsii v srednem summami Fure–Ermita”, Izv. vuzov. Matem., 1968, no. 7, 78–84 | MR | Zbl

[9] Smirnov V. I., Kurs vysshei matematiki, V 5-ti tomakh, v. 5, Fizmatlit, M., 1959

[10] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, 3-e izd., Fizmatlit, M., 2007 | MR

[11] Vakarchuk S. B., Vakarchuk M. B., “Neravenstva tipa Kolmogorova dlya analiticheskikh funktsii odnoi i dvukh kompleksnykh peremennykh i ikh primenenie k teorii approksimatsii”, Ukr. matem. zhurn., 63:12 (2011), 1579–1601 | MR

[12] Rzhavinskaya E. V., O priblizhenii algebraicheskimi mnogochlenami v metrike $L_p$ s vesom, Diss. $\dots$ kand. fiz.-matem. nauk, M., 1980

[13] Potapov M. K., “O priblizhenii ‘uglom’ ”, Proceedings of the conference on constructive theory of functions, Akadémiai Kidaó, Budapest, 1972, 371–399 | MR

[14] Tomich M., “O priblizhenii uglom funktsii s dominiruyuschim modulem gladkosti”, Publ. De L'inst. Math. (Beograd), 23:37 (1978), 193–206

[15] Haussmann W., Zeller K., “Uniqueness and non-uniqueness in bivariate $L^1$-approximation”, Approximation Theory IV, Proc. of Intern. Symp. (College Station, Tex., January 10–14, 1983), Academic Press, New York, 1983, 509–514 | MR

[16] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. matem. in-ta AN SSSR, 178, 1986, 3–113 | MR | Zbl

[17] Gonska H., Jetter K., “Jackson-type theorems on approximation by trigonometric and algebraic pseudopolynomials”, J. Approxim. Theory, 48:4 (1986), 396–406 | DOI | MR | Zbl

[18] Vakarchuk S. B., “O nailuchshem priblizhenii obobschennymi polinomami v odnom prostranstve analiticheskikh funktsii dvukh kompleksnykh peremennykh”, Izv. vuzov. Matem., 1991, no. 7, 14–25 | MR | Zbl