On solvability of inhomogeneous Cauchy--Riemann equation in functional spaces with a~system of uniform estimates
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 77-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an analog of the Hörmander theorem on solvability of the $\overline\partial$-problem in spaces of functions satisfying a system of uniform estimates. The result is formulated in terms of the weight sequence which determines the space. We give some applications for multipliers of projective and inductive-projective weight spaces of entire functions and for convolution operators in the Roumieu spaces of ultradifferentiable functions.
Keywords: inhomogeneous Cauchy–Riemann equation, projective weight spaces, convolution operators, ultradifferentiable functions.
Mots-clés : multipliers
@article{IVM_2015_10_a8,
     author = {D. A. Polyakova},
     title = {On solvability of inhomogeneous {Cauchy--Riemann} equation in functional spaces with a~system of uniform estimates},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--82},
     publisher = {mathdoc},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_10_a8/}
}
TY  - JOUR
AU  - D. A. Polyakova
TI  - On solvability of inhomogeneous Cauchy--Riemann equation in functional spaces with a~system of uniform estimates
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 77
EP  - 82
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_10_a8/
LA  - ru
ID  - IVM_2015_10_a8
ER  - 
%0 Journal Article
%A D. A. Polyakova
%T On solvability of inhomogeneous Cauchy--Riemann equation in functional spaces with a~system of uniform estimates
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 77-82
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_10_a8/
%G ru
%F IVM_2015_10_a8
D. A. Polyakova. On solvability of inhomogeneous Cauchy--Riemann equation in functional spaces with a~system of uniform estimates. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 77-82. http://geodesic.mathdoc.fr/item/IVM_2015_10_a8/

[1] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[2] Hörmander L., “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73 (1967), 943–949 | DOI | MR | Zbl

[3] Mityagin B. S., Khenkin G. M., “Lineinye zadachi kompleksnogo analiza”, UMN, 26:4 (1971), 93–152 | MR | Zbl

[4] Berenstein C. A., Taylor B. A., “A new look at interpolation theory for entire functions of one variable”, Advances Math., 33 (1979), 109–143 | DOI | MR | Zbl

[5] Meise R., Taylor B. A., “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26 (1988), 265–287 | DOI | MR | Zbl

[6] Momm S., “Closed principal ideals in nonradial Hörmander algebras”, Arch. Math. (Basel), 58 (1992), 47–55 | DOI | MR | Zbl

[7] Polyakova D. A., “O lineinom nepreryvnom pravom obratnom k operatoru svertki v prostranstvakh ultradifferentsiruemykh funktsii”, Matem. zametki, 96:4 (2014), 548–566 | DOI | MR | Zbl

[8] Musin I. Kh., “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Matem. sb., 195:10 (2004), 83–108 | DOI | MR | Zbl

[9] Abanin A. V., Filipev I. A., “Analiticheskaya realizatsiya prostranstv, sopryazhennykh k prostranstvam beskonechno differentsiruemykh funktsii”, Sib. matem. zhurn., 47:3 (2006), 485–500 | MR | Zbl

[10] Epifanov O. V., “Razreshimost uravneniya Koshi–Rimana s ogranicheniyami rosta funktsii i vesovaya approksimatsiya analiticheskikh funktsii”, Izv. vuzov. Matem., 1990, no. 2, 49–52 | MR | Zbl

[11] Epifanov O. V., “O razreshimosti neodnorodnogo uravneniya Koshi–Rimana v klassakh funktsii, ogranichennykh s vesom i sistemoi vesov”, Matem. zametki, 51:1 (1992), 83–92 | MR | Zbl

[12] Langenbruch M., “Differentiable functions and the $\overline\partial$-complex”, Funct. Anal., Proc. of the Essen Conf., eds. K. D. Bierstedt, A. Pietsch, D. Vogt, Marcel Dekker, Inc., New York, 1993, 415–434 | MR

[13] Abanin A. V., Pham Trong Tien, “Continuation of holomorphic functions and some of its applications”, Studia Math., 200 (2010), 279–295 | DOI | MR | Zbl

[14] Meyer T., “Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type”, Studia Math., 125 (1997), 101–129 | MR | Zbl

[15] Abanina D. A., “On Borel's theorem for spaces of ultradifferentiable functions of mean type”, Res. Math., 44 (2003), 195–213 | DOI | MR | Zbl