On guaranteed estimate of reconstruction error of parameters of linear difference system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 72-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing parameters of linear autonomous difference system with discrete time by a finite set of observations under the assumption that those include an error of measurement. As for the error, the propositions about it are minimal ones, namely, the difference between a state vector and the corresponding observation is componentwisely bounded above in absolute value by a given positive number. Under these assumptions, we propose a theorem of a minimal guaranteed estimate of the reconstruction error and describe the corresponding algorithm of reconstruction.
Keywords: difference systems with discrete time
Mots-clés : reconstruction.
@article{IVM_2015_10_a7,
     author = {V. P. Maksimov},
     title = {On guaranteed estimate of reconstruction error of parameters of linear difference system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--76},
     publisher = {mathdoc},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_10_a7/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - On guaranteed estimate of reconstruction error of parameters of linear difference system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 72
EP  - 76
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_10_a7/
LA  - ru
ID  - IVM_2015_10_a7
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T On guaranteed estimate of reconstruction error of parameters of linear difference system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 72-76
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_10_a7/
%G ru
%F IVM_2015_10_a7
V. P. Maksimov. On guaranteed estimate of reconstruction error of parameters of linear difference system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 72-76. http://geodesic.mathdoc.fr/item/IVM_2015_10_a7/

[1] Davidson J., Econometric theory, Blackwell Publishers, Oxford, 2000

[2] Andrianov D. L. i dr., Tselevoe upravlenie protsessami sotsialno-ekonomicheskogo razvitiya sub'ektov Rossiiskoi Federatsii: modelirovanie, informatsionnoe, matematicheskoe i instrumentalnoe obespechenie, Permsk. gos. un-t, Perm, 2008

[3] Furasov V. D., Modelirovanie plokho formalizuemykh protsessov, Akademiyad, M., 1997

[4] Enders W., Applied econometric time series, Wiley, New York, 1995

[5] Egorshin A. O., “Ob odnom sposobe otsenki koeffitsientov modeliruyuschikh uravnenii dlya posledovatelnostei”, Sib. zhurn. industrialnoi matem., 3:2(6) (2000), 78–96 | MR | Zbl

[6] Demidenko G. D., “Vosstanovlenie koeffitsientov sistemy lineinykh raznostnykh uravnenii”, Vestn. NGU. Ser. matem., mekhan., inform., 10:2 (2010), 45–53 | Zbl

[7] Maksimov V. P., Chadov A. L., “Gibridnye modeli v zadachakh ekonomicheskoi dinamiki”, Vestn. Permsk. un-ta. Ekonomika, 2011, no. 2(9), 13–23

[8] Chadov A., Maksimov V., “Linear boundary value problems and control problems for a class of functional differential equations with continuous and discrete times”, Funct. Diff. Equat., 19:1–2 (2012), 49–62 | MR | Zbl

[9] Maksimov V. P., Chadov A. L., “Ob odnom klasse upravlenii dlya funktsionalno-differentsialnoi nepreryvno-diskretnoi sistemy”, Izv. vuzov. Matem., 2012, no. 9, 72–76 | MR

[10] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR