On the root-class residuality of generalized free products with a~normal amalgamation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 27-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain both necessary and sufficient conditions for the free product of two groups with normal amalgamated subgroups to be a residually $\mathcal C$-group, where $\mathcal C$ is a root class of groups, which must be homomorphically closed in most cases.
Keywords: generalized free product, residual property, root class of groups.
@article{IVM_2015_10_a2,
     author = {E. A. Tumanova},
     title = {On the root-class residuality of generalized free products with a~normal amalgamation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--44},
     publisher = {mathdoc},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_10_a2/}
}
TY  - JOUR
AU  - E. A. Tumanova
TI  - On the root-class residuality of generalized free products with a~normal amalgamation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 27
EP  - 44
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_10_a2/
LA  - ru
ID  - IVM_2015_10_a2
ER  - 
%0 Journal Article
%A E. A. Tumanova
%T On the root-class residuality of generalized free products with a~normal amalgamation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 27-44
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_10_a2/
%G ru
%F IVM_2015_10_a2
E. A. Tumanova. On the root-class residuality of generalized free products with a~normal amalgamation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2015), pp. 27-44. http://geodesic.mathdoc.fr/item/IVM_2015_10_a2/

[1] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[2] Azarov D. N., Tedzho D., “Ob approksimiruemosti svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi kornevym klassom grupp”, Nauch. tr. Ivanovsk. gos. un-ta. Matem., 2002, no. 5, 6–10

[3] Azarov D. N., Tumanova E. A., “Ob approksimiruemosti obobschennykh svobodnykh proizvedenii grupp kornevymi klassami”, Nauch. tr. Ivanovsk. gos. un-ta. Matem., 2008, no. 6, 29–42

[4] Tieudjo D., “On root-class residuality of some free constructions”, JP J. Algebra, Number Theory and Appl., 18:2 (2010), 125–143 | MR | Zbl

[5] Azarov D. N., Goltsov D. V., “O pochti approksimiruemosti obobschennykh svobodnykh proizvedenii i HNN-rasshirenii nekotorymi klassami konechnykh grupp”, Vestn. Ivanovsk. gos. un-ta. Ser. Estestvennye, obschestvennye nauki, 2012, no. 2, 86–91

[6] Tumanova E. A., “Nekotorye usloviya approksimiruemosti kornevymi klassami grupp obobschennykh svobodnykh proizvedenii s normalnoi ob'edinennoi podgruppoi”, Chebyshevskii sb., 14:3 (2013), 134–141

[7] Tumanova E. A., “Ob approksimiruemosti obobschennykh svobodnykh proizvedenii kornevymi klassami grupp”, Modelir. i analiz inform. sistem, 20:1 (2013), 133–137

[8] Goltsov D. V., “O pochti approksimiruemosti kornevymi klassami obobschennykh svobodnykh proizvedenii i HNN-rasshirenii grupp”, Chebyshevskii sb., 14:3 (2013), 34–41

[9] Tumanova E. A., “Ob approksimiruemosti kornevymi klassami HNN-rasshirenii grupp”, Modelir. i analiz inform. sistem, 21:4 (2014), 148–180

[10] Goltsov D. V., “Approksimiruemost HNN-rasshireniya s tsentralnymi svyazannymi podgruppami kornevym klassom grupp”, Matem. zametki, 97:5 (2015), 665–669 | DOI | MR

[11] Sokolov E. V., “Ob approksimiruemosti otnositelno sopryazhennosti nekotorykh svobodnykh konstruktsii grupp kornevymi klassami konechnykh grupp”, Matem. zametki, 97:5 (2015), 767–780 | DOI | MR

[12] Sokolov E. V., “A characterization of root classes of groups”, Comm. Algebra, 43:2 (2015), 856–860 | DOI | MR | Zbl

[13] Goltsov D. V., Yatskin N. I., “Klassy grupp i podgruppovye topologii”, Vestn. Ivanovsk. gos. un-ta. Ser. Estestvennye, obschestvennye nauki, 2011, no. 2, 115–128

[14] Sokolov E. V., “Ob otdelimosti tsiklicheskikh podgrupp svobodnoi gruppy kornevym klassom grupp”, Matem. i ee prilozh.: Zhurn. Ivanovsk. matem. o-va, 2011, no. 1, 101–104

[15] Gudovschikova A. S., Sokolov E. V., “Dva zamechaniya o klasse konechnykh razreshimykh $\pi$-grupp”, Vestn. molodykh uchenykh Ivanovsk. gos. un-ta, 2012, no. 12, 3–4

[16] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivanovsk. gos. ped. in-ta, 18, 1958, 49–60

[17] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl

[18] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1 (1964), 301–305 | DOI | MR | Zbl

[19] Dixon M. R., Kurdachenko L. A., Subbotin I. Ya., “On various rank conditions in infinite groups”, Algebra and Discrete Math., 2007, no. 4, 23–44 | MR | Zbl

[20] Tumanova E. A., “Ob approksimiruemosti konechnymi gruppami obobschennykh svobodnykh proizvedenii grupp”, Chebyshevskii sb., 13:1 (2012), 150–152 | MR | Zbl

[21] Tumanova E. A., “Ob approksimiruemosti konechnymi $\pi$-gruppami obobschennykh svobodnykh proizvedenii grupp”, Matem. zametki, 95:4 (2014), 605–614 | DOI | MR | Zbl

[22] Sokolov E. V., Otdelimost podgrupp nekotorymi klassami konechnykh grupp, LAP Lambert Academic Publishing, 2012

[23] Sokolov E. V., “Ob otdelimosti podgrupp nilpotentnykh grupp v klasse konechnykh $\pi$-grupp”, Sib. matem. zhurn., 55:6 (2014), 1381–1390 | MR | Zbl