Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_9_a7, author = {A. V. Zykina and N. V. Melen'chuk}, title = {Finite number of iterations in the two-step extragradient method}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {75--79}, publisher = {mathdoc}, number = {9}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a7/} }
TY - JOUR AU - A. V. Zykina AU - N. V. Melen'chuk TI - Finite number of iterations in the two-step extragradient method JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 75 EP - 79 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_9_a7/ LA - ru ID - IVM_2014_9_a7 ER -
A. V. Zykina; N. V. Melen'chuk. Finite number of iterations in the two-step extragradient method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2014_9_a7/
[1] Konnov I. V., Combined relaxation methods for variational inequalities, Springer-Verlag, Berlin, 2001 | MR | Zbl
[2] Antipin A. S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 45:11 (2005), 1969–1990 | MR | Zbl
[3] Antipin A. S., Artemeva L. A., Vasilev F. P., “Nepreryvnyi ekstragradientnyi metod resheniya parametricheskoi mnogokriterialnoi zadachi ravnovesnogo programmirovaniya”, Differents. uravneniya, 45:11 (2009), 1577–1585 | MR | Zbl
[4] Antipin A. S., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsii Lagranzha”, Ekonomika i matem. metody, 12:6 (1976), 1164–1173 | Zbl
[5] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i matem. metody, 12:4 (1976), 747–756 | MR | Zbl
[6] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002
[7] Zykina A. V., Melenchuk N. V., “Dvukhshagovyi ekstragradientnyi metod dlya zadachi upravleniya resursami”, Modelirovanie i analiz informatsionnykh sistem, 17:1 (2010), 65–75
[8] Zykina A. V., Melenchuk N. V., “Dvukhshagovyi ekstragradientnyi metod dlya variatsionnykh neravenstv”, Izv. vuzov. Matem., 2010, no. 9, 82–85 | MR | Zbl
[9] Vasilev F. P., Nedich A., “O trekhshagovom regulyarizovannom metode proektsii gradienta dlya resheniya zadach minimizatsii s netochnymi iskhodnymi dannymi”, Izv. vuzov. Matem., 1993, no. 12, 35–43 | MR | Zbl
[10] Antipin A. S., Nedich A., Yachimovich M., “Trekhshagovyi metod linearizatsii dlya zadach minimizatsii”, Izv. vuzov. Matem., 1994, no. 12, 3–7 | MR | Zbl
[11] Malinov V. G., “O regulyarizovannom dvukhshagovom proektsionnom metode dlya zadach minimizatsii s ogranicheniyami”, Zhurn. vychisl. matem. i matem. fiz., 40:1 (2000), 65–71 | MR | Zbl
[12] Konnov I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matem., 1993, no. 2, 46–53 | MR | Zbl
[13] Polyak B. T., Vvedenie v optimizatsiyu, 2-e izd., LENARD, M., 2014
[14] Zaporozhets D. N., Zykina A. V., Melenchuk N. V., “Sravnitelnyi analiz ekstragradientnykh metodov resheniya variatsionnykh neravenstv dlya nekotorykh zadach”, Avtomatika i telemekhanika, 2012, no. 4, 32–46