Solvability of thermoviscoelastic problem for one Oskolkov's model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a problem of existence of weak solution to initial boundary-value problem of thermoviscoelasticity of one mathematical Oskolkov's model which describes a motion of linearly elastic-delayed Voigt fluid.
Keywords: weak solutions, theorems of existence, thermoviscoelasticity, Oskolkov's model.
@article{IVM_2014_9_a6,
     author = {A. V. Zvyagin and V. P. Orlov},
     title = {Solvability of thermoviscoelastic problem for one {Oskolkov's} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--74},
     publisher = {mathdoc},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a6/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - V. P. Orlov
TI  - Solvability of thermoviscoelastic problem for one Oskolkov's model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 69
EP  - 74
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_9_a6/
LA  - ru
ID  - IVM_2014_9_a6
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A V. P. Orlov
%T Solvability of thermoviscoelastic problem for one Oskolkov's model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 69-74
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_9_a6/
%G ru
%F IVM_2014_9_a6
A. V. Zvyagin; V. P. Orlov. Solvability of thermoviscoelastic problem for one Oskolkov's model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 69-74. http://geodesic.mathdoc.fr/item/IVM_2014_9_a6/

[1] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Zap. nauchn. semin. LOMI, 38, 1973, 98–136 | MR | Zbl

[2] Oskolkov A. P., “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauchn. semin. LOMI, 59, 1976, 133–177 | MR | Zbl

[3] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[4] Zvyagin V. G., Turbin M. V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012

[5] Zvyagin A. V., “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal., 90 (2013), 70–85 | DOI | MR | Zbl

[6] Zvyagin V. G., Orlov V. P., “Razreshimost v slabom smysle sistemy termovyazkouprugosti dlya modeli Dzheffrisa”, Izv. vuzov. Matem., 2013, no. 9, 64–69 | Zbl

[7] Orlov V. P., Parshin M. I., “Ob odnoi zadache dinamiki termovyazkouprugoi sredy tipa Oldroida”, Izv. vuzov. Matem., 2014, no. 5, 68–74

[8] Blanchard D., Bruyere N., Guibe O., “Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation”, Commun. Pure Appl. Anal., 12:5 (2013), 2213–2227 | DOI | MR | Zbl

[9] Blanchard D., “A few result on coupled systems of thermomechanics”, On the notions of solution to nonlinear elliptic problems: results and developments, Quaderni di Matematica, 23, 2008, 145–182 | MR

[10] Simon J., “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl