On asymptotic form of the Hermite--Pade approximations for a~system of Mittag-Leffler functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Laplace method we study asymptotic properties of Hermite integrals. In particular, we determine the asymptotic form of diagonal Hermite–Pade approximations for the system of exponents. Similar results are proved for the system of confluent hypergeometric functions. The obtained theorems supplement the known results by F. Wielonnsky, A. I. Aptekarev and other authors.
Keywords: Hermite integrals, Hermite–Pade approximations, asymptotic equalities.
Mots-clés : joint Pade approximations
@article{IVM_2014_9_a5,
     author = {A. P. Starovoitov},
     title = {On asymptotic form of the {Hermite--Pade} approximations for a~system of {Mittag-Leffler} functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a5/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - On asymptotic form of the Hermite--Pade approximations for a~system of Mittag-Leffler functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 59
EP  - 68
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_9_a5/
LA  - ru
ID  - IVM_2014_9_a5
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T On asymptotic form of the Hermite--Pade approximations for a~system of Mittag-Leffler functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 59-68
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_9_a5/
%G ru
%F IVM_2014_9_a5
A. P. Starovoitov. On asymptotic form of the Hermite--Pade approximations for a~system of Mittag-Leffler functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2014_9_a5/

[1] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[2] Hermite C., “Sur la fonction exponentielle”, C. R. Akad. Sci. (Paris), 77 (1873), 18–293

[3] Beiker Dzh. (ml.), Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[4] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[5] Aptekarev A. I., Buslaev V. I., Martines-Finkelshtein A., Suetin S. P., “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (2011), 37–122 | DOI | MR | Zbl

[6] Aptekarev A. I., Koielaars A. E., “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, UMN, 66:6 (2011), 123–190 | DOI | MR | Zbl

[7] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | DOI | MR | Zbl

[8] Boyd J. P., “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Pade method”, J. Comput. Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl

[9] Beckermann B., Kalyagin V., Matos A. C., Wielonsky F., “How well does the Hermite–Pade approximation smooth the Gibbs phenomenon?”, Math. Comput., 80:274 (2011), 931–958 | DOI | MR | Zbl

[10] Sorokin V. N., “Tsiklicheskie grafy i teorema Aperi”, UMN, 57:3 (2002), 99–134 | DOI | MR | Zbl

[11] Van Assche W., “Continued fractions: from analytic number theory to constructive approximation”, Contemp. Math., Amer. Math. Soc., 236 (1999), 325–342 | DOI | Zbl

[12] Aptekarev A. I. (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei., Sovr. probl. matem., 9, MIAN, M., 1988 | DOI | Zbl

[13] Kalyagin V. A., “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl

[14] Aptekarev A. I., Kalyagin V. A., Saff E. B., “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[15] Bleher P. M., Kuijlaars A. B. J., “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 2004:3 (2004), 109–129 | DOI | MR | Zbl

[16] Aptekarev A. I., Bleher P. M., Kuijlaars A. B. J., “Large $n$ limit of Gaussian random matrices with external source. Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[17] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | MR | Zbl

[18] Klein F., Elementarnaya matematika s tochki zreniya vysshei, v. 1, Nauka, M., 1933

[19] Aptekarev A. I., “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 1, 68–74 | MR | Zbl

[20] Perron O., Die Lehre von den Kettenbrüchen, Teubner, Leipzig–Berlin, 1929 | Zbl

[21] Aptekarev A. I., “Ob approksimatsiyakh Pade k naboru $\{_1F_1(1,c;\lambda_iz)\}^k_{i=1}$”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 2, 58–62 | MR | Zbl

[22] Starovoitov A. P., “O svoistvakh approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, Dokl. NAN Belarusi, 57:1 (2013), 5–10 | MR

[23] Kalyagin V. A., “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Matem. sb., 110(152):4 (1979), 609–627 | MR | Zbl

[24] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN SSSR, 157, 1981, 31–48 | MR | Zbl

[25] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | DOI | MR | Zbl

[26] Nikishin E. M., “Sovmestnye approksimatsii Pade”, Matem. sb., 113(155):4 (1980), 499–519 | MR | Zbl

[27] Nikishin E. M., “Asimptotika lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Matem., 1986, no. 2, 33–41 | MR | Zbl

[28] Bustamante Zh., Lopes Lagomasino G., “Approksimatsii Ermita–Pade dlya sistemy Nikishina analiticheskikh funktsii”, Matem. sb., 183:11 (1992), 117–138 | MR | Zbl

[29] Driver K., Stahl H., “Normality in Nikishin systems”, Indag. Math. (N.S.), 5:2 (1994), 161–187 | DOI | MR | Zbl

[30] Driver K., Stahl H., “Simultaneous rational approximants to Nikishin systems. I”, Acta Sci. Math., 60:1–2 (1995), 245–263 | MR | Zbl

[31] Driver K., Stahl H., “Simultaneous rational approximants to Nikishin systems. II”, Acta Sci. Math., 61:1–4 (1995), 261–284 | MR | Zbl

[32] Aptekarev A. I., “Asimptotika polinomov sovmestnoi ortogonalnosti v sluchae Andzhelesko”, Matem. sb., 136(178):1 (1988), 56–84 | MR | Zbl

[33] Aptekarev A. I., “Silnaya asimptotika mnogochlenov sovmestnoi ortogonalnosti dlya sistemy Nikishina”, Matem. sb., 190:5 (1999), 3–44 | DOI | MR | Zbl

[34] Aptekarev A. I., Lysov V. G., “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Matem. sb., 201:2 (2010), 29–78 | DOI | MR | Zbl

[35] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl

[36] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR | Zbl

[37] Wielonnsky F., “Asymptotics of diagonal Hermite–Pade approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR

[38] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus. I”, J. Reine Angew. Math., 166 (1931), 118–136 | Zbl

[39] Starovoitov A. P., Starovoitova N. A., “Approksimatsii Pade funktsii Mittag-Lefflera”, Matem. sb., 198:7 (2007), 109–122 | DOI | MR | Zbl