Properties of the Coxeter transformation for affine Dynkin cycle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 43-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of Coxeter transformations for affine Dynkin cycle and find Jordan form of Coxeter transformation and Coxeter numbers.
Keywords: Weyl group
Mots-clés : Coxeter transformation, affine Dynkin cycle, Jordan form.
@article{IVM_2014_9_a3,
     author = {V. V. Men'shikh and V. F. Subbotin},
     title = {Properties of the {Coxeter} transformation for affine {Dynkin} cycle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--48},
     publisher = {mathdoc},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a3/}
}
TY  - JOUR
AU  - V. V. Men'shikh
AU  - V. F. Subbotin
TI  - Properties of the Coxeter transformation for affine Dynkin cycle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 43
EP  - 48
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_9_a3/
LA  - ru
ID  - IVM_2014_9_a3
ER  - 
%0 Journal Article
%A V. V. Men'shikh
%A V. F. Subbotin
%T Properties of the Coxeter transformation for affine Dynkin cycle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 43-48
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_9_a3/
%G ru
%F IVM_2014_9_a3
V. V. Men'shikh; V. F. Subbotin. Properties of the Coxeter transformation for affine Dynkin cycle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 43-48. http://geodesic.mathdoc.fr/item/IVM_2014_9_a3/

[1] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR

[2] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR | Zbl

[3] Subbotin V. F., Stekolschik R. B., “Zhordanova forma preobrazovaniya Kokstera i prilozheniya k predstavleniyam konechnykh grafov”, Funkts. analiz i ego pril., 12:1 (1978), 84–85 | MR | Zbl

[4] Stekolschik R. B., “Chisla Kokstera rasshirennykh skhem Dynkina s kratnymi svyazyami”, XVI Vsesoyuznaya algebraicheskaya konferentsiya, Tezisy dokladov, ch. 2, L., 1981, 187

[5] Kolmykov V. A., Menshikh V. V., “O pereklyucheniyakh orientatsii grafov”, Diskretnaya matem., 14:3 (2002), 18–22 | DOI | MR | Zbl

[6] Menshikh V. V., Kolmykov V. A., “Invariantnye preobrazovaniya znakovykh grafov”, Avtomatika i vychislitelnaya tekhnika, 34:5 (2000), 51–57 | MR

[7] Menshikh V. V., Subbotin V. F., Orientatsii grafov i preobrazovaniya Kokstera, porozhdennye imi, VINITI, No 6479-82, Voronezhskii gos. un-t, 1982

[8] Coleman A. J., “Killing and the Coxeter transformation of Kac–Moody algebras”, Inventiones mathematicae, 95:3 (1989), 447–477 | DOI | MR | Zbl

[9] Drozd Yu. A., “Preobrazovaniya Kokstera i predstavleniya chastichno uporyadochennykh mnozhestv”, Funkts. analiz i ego pril., 8:3 (1974), 34–42 | MR | Zbl

[10] Stekolschik R. B., “Usloviya regulyarnosti predstavlenii grafov”, Tr. matem. fakulteta VGU, 16, 1975, 58–61