Variational inequalities with strong nonlinearities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 27-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a connection between critical values and topological characteristics of non-smooth functionals. We establish analogs of theorems about regular interval and nek. We also find lower estimates of solutions to variational inequalites with odd potential operators.
Keywords: critical value, topological characterictics of non-smooth functionals, variational inequality, Banach space.
@article{IVM_2014_9_a2,
     author = {V. S. Klimov},
     title = {Variational inequalities with strong nonlinearities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--42},
     publisher = {mathdoc},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a2/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Variational inequalities with strong nonlinearities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 27
EP  - 42
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_9_a2/
LA  - ru
ID  - IVM_2014_9_a2
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Variational inequalities with strong nonlinearities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 27-42
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_9_a2/
%G ru
%F IVM_2014_9_a2
V. S. Klimov. Variational inequalities with strong nonlinearities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 27-42. http://geodesic.mathdoc.fr/item/IVM_2014_9_a2/

[1] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[2] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz i ego pril., 1:3 (1967), 66–73 | MR | Zbl

[3] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR | Zbl

[4] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[6] Gossez J. P., “Nonlinear elliptic boundary value problems for equations with rapidly or slowly coefficients”, Trans. Amer. Math. Soc., 190:3 (1974), 163–205 | DOI | MR | Zbl

[7] Klimov V. S., “Netrivialnye resheniya uravnenii s potentsialnymi operatorami”, Sib. matem. zhurn., 21:6 (1980), 28–45 | MR | Zbl

[8] Klimov V. S., “O topologicheskikh kharakteristikakh negladkikh funktsionalov”, Izv. RAN. Ser. matem., 62:5 (1998), 117–134 | DOI | MR | Zbl

[9] Ambrosetti A., Rabinowitz P., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:4 (1973), 349–381 | DOI | MR | Zbl

[10] Clark D. C., “A variant of Lusternik–Schnierelman theory”, Indiana Univ. Math. J., 22:1 (1972), 65–74 | DOI | MR | Zbl

[11] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[12] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[13] Cobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[14] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[15] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[16] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i dlya drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl