Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_9_a1, author = {S. V. Kirichenko and L. S. Pul'kina}, title = {A problem with nonlocal initial data for one-dimensional hyperbolic equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {17--26}, publisher = {mathdoc}, number = {9}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a1/} }
TY - JOUR AU - S. V. Kirichenko AU - L. S. Pul'kina TI - A problem with nonlocal initial data for one-dimensional hyperbolic equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 17 EP - 26 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_9_a1/ LA - ru ID - IVM_2014_9_a1 ER -
S. V. Kirichenko; L. S. Pul'kina. A problem with nonlocal initial data for one-dimensional hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 17-26. http://geodesic.mathdoc.fr/item/IVM_2014_9_a1/
[1] Samarskii A. A., “O nekotorykh problemakh sovremennoi teorii differentsialnykh uravnenii”, Differents. uravneniya, 16:11 (1980), 1925–1935 | MR
[2] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:1 (1963), 155–160 | MR
[3] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Matem. modelir., 12:1 (2000), 94–103 | MR | Zbl
[4] Kozhanov A. I., Pulkina L. S., “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 42:9 (2006), 1166–1179 | MR | Zbl
[5] Pulkina L. S., “Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokalnymi usloviyami $1$ i $2$-go roda”, Izv. vuzov. Matem., 2012, no. 4, 74–83 | MR
[6] Pulkina L. S., “Nelokalnaya zadacha dlya giperbolicheskogo uravneniya s integralnymi usloviyami I roda s yadrami, zavisyaschimi ot vremeni”, Izv. vuzov. Matem., 2012, no. 10, 32–44 | MR
[7] Kuz A. M., Ptashnik B. I., “Zadacha z integralnimi umovami dlya rivnyannya Kleina–Gordona u klassi funktsii, maizhe periodichnikh za prostorovimi zminnimi”, Prikl. problemi mekh. i mat., 2010, no. 8, 41–53
[8] Abdrakhmanov A. M., Kozhanov A. I., “Zadacha s nelokalnym granichnym usloviem dlya odnogo klassa uravnenii nechetnogo poryadka”, Izv. vuzov. Matem., 2007, no. 5, 3–12 | MR | Zbl
[9] Lukina G. A., “Kraevye zadachi s integralnymi granichnymi usloviyami po vremeni dlya uravnenii tretego poryadka”, Matem. zametki YaGU, 17:2 (2010), 75–97 | Zbl
[10] Prilepko A. I., Kostin A. B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym pereopredeleniem”, Matem. sb., 183:4 (1992), 49–68 | MR | Zbl
[11] Cannon J. R., Lin Y. P., “An inverse problem of finding a parameter in a semi-linear heat equation”, J. Math. Anal. Appl., 145:2 (1990), 470–484 | DOI | MR | Zbl
[12] Kamynin V. L., Kostin A. B., “Dve obratnye zadachi opredeleniya koeffitsienta v parabolicheskom uravnenii”, Differents. uravneniya, 46:3 (2010), 372–383 | MR | Zbl
[13] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo Mosk. un-ta, M., 1994
[14] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR