Polynomial first-order differential equations over matrix skew series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 3-16
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we establish that a solution to matrix ordinary first-order differential equations with polynomial right side can be reduced to integration of analogous scalar equations if its parameters are triangle. We give conditions upon elements of the sought-for matrix in the case when its parameters are given in the form of dual-diagonal matrices. We consider the Riccati equation over a set of square matrices of the third order. The results are expressed in terms of skew series introduced by the author earlier.
Keywords:
matrix differential equations, decreasing of the order, skew series.
@article{IVM_2014_9_a0,
author = {V. P. Derevenskii},
title = {Polynomial first-order differential equations over matrix skew series},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--16},
year = {2014},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a0/}
}
V. P. Derevenskii. Polynomial first-order differential equations over matrix skew series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2014_9_a0/
[1] Derevenskii V. P., “Kvadratnoe uravnenie nad matrichnymi kosymi ryadami”, Izv. vuzov. Matem., 2014, no. 1, 17–30
[2] Kurosh A. G., Kurs vysshei algebry, GIFML, M., 1963 | MR
[3] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR
[4] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001 | MR
[5] Derevenskii V. P., “Integriruemost uravneniya Rikkati i lineinogo odnorodnogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1987, no. 5, 33–40 | MR | Zbl
[6] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001