Polynomial first-order differential equations over matrix skew series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish that a solution to matrix ordinary first-order differential equations with polynomial right side can be reduced to integration of analogous scalar equations if its parameters are triangle. We give conditions upon elements of the sought-for matrix in the case when its parameters are given in the form of dual-diagonal matrices. We consider the Riccati equation over a set of square matrices of the third order. The results are expressed in terms of skew series introduced by the author earlier.
Keywords: matrix differential equations, decreasing of the order, skew series.
@article{IVM_2014_9_a0,
     author = {V. P. Derevenskii},
     title = {Polynomial first-order differential equations over matrix skew series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_9_a0/}
}
TY  - JOUR
AU  - V. P. Derevenskii
TI  - Polynomial first-order differential equations over matrix skew series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 16
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_9_a0/
LA  - ru
ID  - IVM_2014_9_a0
ER  - 
%0 Journal Article
%A V. P. Derevenskii
%T Polynomial first-order differential equations over matrix skew series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-16
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_9_a0/
%G ru
%F IVM_2014_9_a0
V. P. Derevenskii. Polynomial first-order differential equations over matrix skew series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2014), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2014_9_a0/

[1] Derevenskii V. P., “Kvadratnoe uravnenie nad matrichnymi kosymi ryadami”, Izv. vuzov. Matem., 2014, no. 1, 17–30

[2] Kurosh A. G., Kurs vysshei algebry, GIFML, M., 1963 | MR

[3] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[4] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001 | MR

[5] Derevenskii V. P., “Integriruemost uravneniya Rikkati i lineinogo odnorodnogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1987, no. 5, 33–40 | MR | Zbl

[6] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001