Nonlocal problem with fractional derivatives for mixed type equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of a boundary-value problem for the equation of mixed type with generalized operators of fractional differentiation in boundary conditions. Under restrictions inequality type on the known functions and different orders of generalized fractional differentiation operators in boundary conditions we prove the theorem of uniqueness. Existence of the solution is proved by the reductions to equation of Fredholm second sort, which unconditional solvability follows from uniqueness of the solution of the problem.
Keywords: a boundary-value problem, regular solution, operator of fractional integration, operator of fractional differentiation, Fredholm's and Abel's integral equations of the second type, singular integral equation with Cauchy kernel, regularization.
@article{IVM_2014_8_a7,
     author = {O. A. Repin and S. K. Kumykova},
     title = {Nonlocal problem with fractional derivatives for mixed type equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--85},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a7/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - Nonlocal problem with fractional derivatives for mixed type equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 79
EP  - 85
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a7/
LA  - ru
ID  - IVM_2014_8_a7
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T Nonlocal problem with fractional derivatives for mixed type equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 79-85
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a7/
%G ru
%F IVM_2014_8_a7
O. A. Repin; S. K. Kumykova. Nonlocal problem with fractional derivatives for mixed type equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 79-85. http://geodesic.mathdoc.fr/item/IVM_2014_8_a7/

[1] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[3] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Izd-vo Sarat. un-ta, Samarskii filial, 1992 | MR | Zbl

[4] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, In. lit., M., 1957

[5] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[6] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973 | MR

[7] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl

[8] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, M., 1970 | MR

[9] Kumykova S. K., “Ob odnoi kraevoi zadache so smescheniem dlya uravneniya $\mathrm{sign}\,y|y|^mu_{xx}+u_{yy}=0$”, Differents. uravneniya, 12:1 (1976), 79–88 | MR | Zbl

[10] Repin O. A., Kumykova S. K., “Ob odnoi kraevoi zadache so smescheniem dlya uravneniya smeshannogo tipa v neogranichennoi oblasti”, Differents. uravneniya, 48:8 (2012), 1140–1149 | Zbl

[11] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl