First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. Deshmukh has obtained interesting results for first nonzero eigenvalue of a minimal hypersurface in the unit sphere. In the present article, we generalize these results to pseudo-umbilical hypersurface and prove: what conditions are satisfied by the first nonzero eigenvalue $\lambda_1$ of the Laplacian operator on a compact immersed pseudo-umbilical hypersurface $M$ in the unit sphere $S^{n+1}$. We also show that a compact immersed pseudo-umbilical hypersurface of the unit sphere $S^{n+1}$ with $\lambda_1=n$ is either isometric to the sphere $S^n$ or for this hypersurface an inequality is fulfilled in which sectional curvatures of the hypersuface $M$ participate.
Mots-clés : pseudoumbilical hypersurface
Keywords: eigenvalue of Laplacian operator.
@article{IVM_2014_8_a6,
     author = {Majid Ali Choudhary},
     title = {First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--78},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/}
}
TY  - JOUR
AU  - Majid Ali Choudhary
TI  - First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 69
EP  - 78
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/
LA  - ru
ID  - IVM_2014_8_a6
ER  - 
%0 Journal Article
%A Majid Ali Choudhary
%T First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 69-78
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/
%G ru
%F IVM_2014_8_a6
Majid Ali Choudhary. First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 69-78. http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/

[1] Chen B. Y., “Some results of chern-do-carmo-kobayashi type and the length of the second fundamental form”, Indiana Univ. Math. J., 20 (1971), 1175–1185 | DOI | MR | Zbl

[2] Yau S. T., “Problem section of the seminar in differential geometry at Tokyo”, Semin. Differential Geometry, Ann. Math. Stud., 102, 1982, 669–706 | MR | Zbl

[3] Deshmukh S., Al-Eid A., “Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature”, J. Geom. Anal., 15:4 (2005), 589–606 | DOI | MR | Zbl

[4] Tanno S., “Eigenvalues of the Laplacian of Riemannian manifolds”, Tohoku Math. J. II Ser., 25 (1973), 391–403 | DOI | MR | Zbl

[5] Deshmukh S., “First nonzero eigenvalue of a minimal hypersurface in the unit sphere”, Ann. Mat. Pura Appl. (4), 191:3 (2012), 529–537 | DOI | MR | Zbl

[6] Deshmukh S., “Minimal hypersurfaces in neraly Kähler 6-sphere”, J. Geom. Phys., 60:4 (2010), 623–625 | DOI | MR | Zbl

[7] Obata M., “Certain conditions for a Riemannian manifold to be isometric with a sphere”, J. Math. Soc. Japan, 14 (1962), 333–340 | DOI | MR | Zbl