First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
S. Deshmukh has obtained interesting results for first nonzero eigenvalue of a minimal hypersurface in the unit sphere. In the present article, we generalize these results to pseudo-umbilical hypersurface and prove: what conditions are satisfied by the first nonzero eigenvalue $\lambda_1$ of the Laplacian operator on a compact immersed pseudo-umbilical hypersurface $M$ in the unit sphere $S^{n+1}$. We also show that a compact immersed pseudo-umbilical hypersurface of the unit sphere $S^{n+1}$ with $\lambda_1=n$ is either isometric to the sphere $S^n$ or for this hypersurface an inequality is fulfilled in which sectional curvatures of the hypersuface $M$ participate.
Mots-clés :
pseudoumbilical hypersurface
Keywords: eigenvalue of Laplacian operator.
Keywords: eigenvalue of Laplacian operator.
@article{IVM_2014_8_a6,
author = {Majid Ali Choudhary},
title = {First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--78},
publisher = {mathdoc},
number = {8},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/}
}
Majid Ali Choudhary. First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 69-78. http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/