Keywords: eigenvalue of Laplacian operator.
@article{IVM_2014_8_a6,
author = {Majid Ali Choudhary},
title = {First nonzero eigenvalue of a~pseudo-umbilical hypersurface in the unit sphere},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--78},
year = {2014},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/}
}
Majid Ali Choudhary. First nonzero eigenvalue of a pseudo-umbilical hypersurface in the unit sphere. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 69-78. http://geodesic.mathdoc.fr/item/IVM_2014_8_a6/
[1] Chen B. Y., “Some results of chern-do-carmo-kobayashi type and the length of the second fundamental form”, Indiana Univ. Math. J., 20 (1971), 1175–1185 | DOI | MR | Zbl
[2] Yau S. T., “Problem section of the seminar in differential geometry at Tokyo”, Semin. Differential Geometry, Ann. Math. Stud., 102, 1982, 669–706 | MR | Zbl
[3] Deshmukh S., Al-Eid A., “Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature”, J. Geom. Anal., 15:4 (2005), 589–606 | DOI | MR | Zbl
[4] Tanno S., “Eigenvalues of the Laplacian of Riemannian manifolds”, Tohoku Math. J. II Ser., 25 (1973), 391–403 | DOI | MR | Zbl
[5] Deshmukh S., “First nonzero eigenvalue of a minimal hypersurface in the unit sphere”, Ann. Mat. Pura Appl. (4), 191:3 (2012), 529–537 | DOI | MR | Zbl
[6] Deshmukh S., “Minimal hypersurfaces in neraly Kähler 6-sphere”, J. Geom. Phys., 60:4 (2010), 623–625 | DOI | MR | Zbl
[7] Obata M., “Certain conditions for a Riemannian manifold to be isometric with a sphere”, J. Math. Soc. Japan, 14 (1962), 333–340 | DOI | MR | Zbl