Application of penalty method to nonstationary approximation of optimization problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 60-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve a general optimization problem, where only approximation sequences are known instead of exact values of the goal function and feasible set. Under these conditions we suggest to utilize a penalty function method. We show that its convergence is attained for rather arbitrary means of approximation via suitable coercivity type conditions.
Keywords: optimization problem, non-stationarity, approximation sequence, penalty method, coercivity conditions.
@article{IVM_2014_8_a5,
     author = {I. V. Konnov},
     title = {Application of penalty method to nonstationary approximation of optimization problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--68},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Application of penalty method to nonstationary approximation of optimization problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 60
EP  - 68
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/
LA  - ru
ID  - IVM_2014_8_a5
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Application of penalty method to nonstationary approximation of optimization problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 60-68
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/
%G ru
%F IVM_2014_8_a5
I. V. Konnov. Application of penalty method to nonstationary approximation of optimization problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 60-68. http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/

[1] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[2] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[3] Pervozvanskii A. A., Gaitsgori V. G., Dekompozitsiya, agregirovanie i priblizhennaya optimizatsiya, Nauka, M., 1979 | MR

[4] Levitin E. S., Teoriya vozmuschenii v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1992 | MR | Zbl

[5] Ermolev Yu. M., Nurminskii E. A., “Predelnye ekstremalnye zadachi”, Kibernetika, 1973, no. 4, 130–132 | MR

[6] Antipin A. S., “Metod regulyarizatsii v zadachakh vypuklogo programmirovaniya”, Ekon. i matem. metody, 11:2 (1975), 336–342

[7] Nurminskii E. A., “Ob odnoi zadache nestatsionarnoi optimizatsii”, Kibernetika, 1977, no. 2, 76–77 | MR | Zbl

[8] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979 | MR

[9] Kaplan A. A., “Ob ustoichivosti metodov resheniya zadach vypuklogo programmirovaniya i variatsionnykh neravenstv”, Modeli i metody optimizatsii, Tr. In-ta matem. SO AN SSSR, 10, 1988, 132–159 | Zbl

[10] Alart P., Lemaire B., “Penalization in non-classical convex programming via variational convergence”, Math. Program., 51:1 (1991), 307–331 | DOI | MR | Zbl

[11] Moudafi A., “Coupling proximal methods and variational convergence”, ZOR, 38:3 (1993), 269–280 | MR | Zbl

[12] Bahraoui M. A., Lemaire B., “Convergence of diagonally stationary sequences in convex optimization”, Set-valued Anal., 2:1 (1994), 49–61 | DOI | MR | Zbl

[13] Cominetti R., “Coupling the proximal point algorithm with approximation methods”, J. Optim. Theory Appl., 95:3 (1997), 581–600 | DOI | MR | Zbl

[14] Barrientos O., “A global regularization method for solving the finite min-max problem”, Comput. Optim. Appl., 11:3 (1998), 277–295 | DOI | MR | Zbl

[15] Salmon G., Nguyen V. H., Strodiot J. J., “Coupling the auxiliary problem principle and epiconvergence theory for solving general variational inequalities”, J. Optim. Theory Appl., 104:3 (2000), 629–657 | DOI | MR | Zbl

[16] Kaplan A., Tichatschke R., “A general view on proximal point methods for variational inequalities in Hilbert spaces”, J. Nonl. Conv. Anal., 2:3 (2001), 305–332 | MR | Zbl

[17] Badriev I. B., Zadvornov O. A., Ismagilov L. N., “On the methods of iterative regularization for the variational inequalities of the second kind”, Comput. Meth. Appl. Math., 3:2 (2003), 223–234 | MR | Zbl

[18] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[19] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR