Application of penalty method to nonstationary approximation of optimization problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 60-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve a general optimization problem, where only approximation sequences are known instead of exact values of the goal function and feasible set. Under these conditions we suggest to utilize a penalty function method. We show that its convergence is attained for rather arbitrary means of approximation via suitable coercivity type conditions.
Keywords: optimization problem, non-stationarity, approximation sequence, penalty method, coercivity conditions.
@article{IVM_2014_8_a5,
     author = {I. V. Konnov},
     title = {Application of penalty method to nonstationary approximation of optimization problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--68},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Application of penalty method to nonstationary approximation of optimization problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 60
EP  - 68
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/
LA  - ru
ID  - IVM_2014_8_a5
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Application of penalty method to nonstationary approximation of optimization problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 60-68
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/
%G ru
%F IVM_2014_8_a5
I. V. Konnov. Application of penalty method to nonstationary approximation of optimization problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 60-68. http://geodesic.mathdoc.fr/item/IVM_2014_8_a5/