On a~distrubution of semiprime numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 53-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semiprime is a natural number which is the product of two (possibly equal) prime numbers. Let $y$ be a natural number and $g(y)$ be the probability for a number $y$ to be semiprime. In this paper we derive an asymptotic formula for counting $g(y)$ for large values of $y$ and evaluate its correctness for different $y$. We also introduce a notion of strong semiprime as a product of two primes of large dimension and investigate a distribution of strong semiprimes.
Keywords: semiprime integer, strong semiprime, distribution of semiprimes, factorization of integers, the RSA ciphering method.
@article{IVM_2014_8_a4,
     author = {Sh. T. Ishmukhametov and F. F. Sharifullina},
     title = {On a~distrubution of semiprime numbers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--59},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a4/}
}
TY  - JOUR
AU  - Sh. T. Ishmukhametov
AU  - F. F. Sharifullina
TI  - On a~distrubution of semiprime numbers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 53
EP  - 59
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a4/
LA  - ru
ID  - IVM_2014_8_a4
ER  - 
%0 Journal Article
%A Sh. T. Ishmukhametov
%A F. F. Sharifullina
%T On a~distrubution of semiprime numbers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 53-59
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a4/
%G ru
%F IVM_2014_8_a4
Sh. T. Ishmukhametov; F. F. Sharifullina. On a~distrubution of semiprime numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 53-59. http://geodesic.mathdoc.fr/item/IVM_2014_8_a4/

[1] Ishmukhametov Sh. T., Metody faktorizatsii naturalnykh chisel, KFU, Kazan, 2011

[2] Boiko A. A., Ziyatdinov D. B., Ishmukhametov Sh. T., “Ob odnom podkhode k probleme faktorizatsii naturalnykh chisel”, Izv. vuzov. Matem., 2011, no. 4, 15–22 | MR | Zbl

[3] Ishmukhametov Sh. T., Sharifullina F. F., “O gladkostepennykh elementakh”, Informatsionnye tekhnologii v sisteme sotsialno-ekonomicheskoi bezopasnosti Rossii i ee regionov, Sb. trudov IV Vseross. nauch. konf., Kazan, 2012, 128–132

[4] Chandrasegkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR

[5] Derbyshire J., Prime obsession: Bernhard Riemann and the greatest unsolved problem in mathematics, Joseph Henry Press, 2003 | MR | Zbl

[6] Weisstein Eric W., Semiprime, http://mathworld.wolfram.com/Semiprime.html

[7] Shparlinski I., Anatomy of integers and cryptography, https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/08us/08us-cryptabit/shparlinksi_anatomy-of-integers-and-cryptography.pdf

[8] Sloane N. J. A., Sequences $\mathrm A083343$, The on-line encyclopedia of integer sequences, http://oeis.org/A083343