Sufficient optimality conditions for extremal controls based on functional increment formulas
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 96-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider optimal control problem without terminal constraints. With the help of nonstandard functional increment formulas we introduce definitions of strongly extremal controls. Such controls are optimal in linear and quadratic problems. In general case, an optimality property is provided with concavity condition of Pontryagin's function with respect to phase variables.
Keywords: optimal control problem, the maximum principle, sufficient optimality conditions.
@article{IVM_2014_8_a10,
     author = {V. A. Srochko and V. G. Antonik},
     title = {Sufficient optimality conditions for extremal controls based on functional increment formulas},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {96--102},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a10/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - V. G. Antonik
TI  - Sufficient optimality conditions for extremal controls based on functional increment formulas
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 96
EP  - 102
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a10/
LA  - ru
ID  - IVM_2014_8_a10
ER  - 
%0 Journal Article
%A V. A. Srochko
%A V. G. Antonik
%T Sufficient optimality conditions for extremal controls based on functional increment formulas
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 96-102
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a10/
%G ru
%F IVM_2014_8_a10
V. A. Srochko; V. G. Antonik. Sufficient optimality conditions for extremal controls based on functional increment formulas. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 96-102. http://geodesic.mathdoc.fr/item/IVM_2014_8_a10/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatlit, M., 1961

[2] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimalnogo upravleniya, Knizhnyi dom “Librokom”, M., 2011

[3] Mangasarian O. L., “Sufficient conditions for the optimal control of nonlinear systems”, SIAM J. Control Optim., 4 (1966), 139–152 | DOI | MR | Zbl

[4] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973 | MR | Zbl

[5] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[6] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[7] Antipina N. V., Dykhta V. A., “Lineinye funktsii Lyapunova–Krotova i dostatochnye usloviya optimalnosti v forme printsipa maksimuma”, Izv. vuzov. Matem., 2002, no. 12, 11–22 | MR | Zbl

[8] Nikolskii M. S., “O dostatochnosti printsipa maksimuma Pontryagina v nekotorykh optimizatsionnykh zadachakh”, Vestn. Mosk. un-ta. Vychislit. matem. i kibern., 2005, no. 1, 35–43 | MR

[9] Khailov E. N., “Ob ekstremalnykh upravleniyakh odnorodnoi bilineinoi sistemy, upravlyaemoi v polozhitelnom oktante”, Tr. MIAN im. V. A. Steklova, 220, 1998, 217–235 | MR | Zbl

[10] Swierniak A., “Cell cycle as an object of control”, J. Biological Systems, 3:1 (1995), 41–54 | DOI

[11] Srochko V. A., Akhmedzhanova N. S., “Issledovanie i reshenie odnogo klassa bilineinykh zadach optimalnogo upravleniya”, Vestn. Buryatsk. un-ta. Matem. i informatika, 2 (2005), 143–148