$I_0^*$-modules
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We study rings over which every module is an $I_0^*$-module dual to $I_0$-module. We describe semiregular rings over which every module is simultaneously $I_0^*$-module and $I_0$-module. We give a description of rings over which every module is a direct sum of injective module and $SV$-module. We investigate relations between weakly Baer modules and $I_0^*$-modules.
Keywords:
semi-artinian rings, $SV$-rings, weakly Baer modules.
Mots-clés : $I_0$-modules, $I_0^*$-modules
Mots-clés : $I_0$-modules, $I_0^*$-modules
@article{IVM_2014_8_a0,
author = {A. N. Abyzov},
title = {$I_0^*$-modules},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--17},
publisher = {mathdoc},
number = {8},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/}
}
A. N. Abyzov. $I_0^*$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/