$I_0^*$-modules
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rings over which every module is an $I_0^*$-module dual to $I_0$-module. We describe semiregular rings over which every module is simultaneously $I_0^*$-module and $I_0$-module. We give a description of rings over which every module is a direct sum of injective module and $SV$-module. We investigate relations between weakly Baer modules and $I_0^*$-modules.
Keywords: semi-artinian rings, $SV$-rings, weakly Baer modules.
Mots-clés : $I_0$-modules, $I_0^*$-modules
@article{IVM_2014_8_a0,
     author = {A. N. Abyzov},
     title = {$I_0^*$-modules},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - $I_0^*$-modules
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/
LA  - ru
ID  - IVM_2014_8_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T $I_0^*$-modules
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/
%G ru
%F IVM_2014_8_a0
A. N. Abyzov. $I_0^*$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/

[1] Abyzov A. N., “O nekotorykh klassakh poluartinovykh kolets”, Sib. matem. zhurn., 53:5 (2012), 955–966 | MR

[2] Abyzov A. N., “Obobschennye $SV$-moduli”, Sib. matem. zhurn., 50:3 (2009), 481–488 | MR | Zbl

[3] Abyzov A. N., “Slabo regulyarnye koltsa nad normalnymi koltsami”, Sib. matem. zhurn., 49:4 (2008), 721–738 | MR | Zbl

[4] Abyzov A. N., “Obobschennye $SV$-koltsa ogranichennogo indeksa nilpotentnosti”, Izv. vuzov. Matem., 2011, no. 12, 3–14 | MR | Zbl

[5] Abyzov A. N., Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli yavlyayutsya $I_0$-modulyami. II”, Fundament. i prikl. matem., 14:2 (2008), 3–12 | MR | Zbl

[6] Abyzov A. N., Tuganbaev A. A., “Podmoduli i pryamye slagaemye”, Fundament. i prikl. matem., 14:6 (2008), 3–31 | MR

[7] Tuganbaev A. A., “Moduli s bolshim chislom pryamykh slagaemykh”, Fundament. i prikl. matem., 12:8 (2006), 233–241 | MR | Zbl

[8] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli yavlyayutsya $I_0$-modulyami”, Fundament. i prikl. matem., 13:5 (2007), 193–200 | MR | Zbl

[9] Tuganbaev A. A., “Koltsa bez beskonechnykh mnozhestv netsentralnykh ortogonalnykh idempotentov”, Fundament. i prikl. matem., 14:1 (2008), 207–221 | MR | Zbl

[10] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[11] Jain S. K., Srivastava A. K., Tuganbaev A. A., Cyclic modules and the structure of rings, Oxford University Press, Oxford, 2012 | MR | Zbl

[12] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending modules, Longman Scientific Technical, Harlow, 1994 | Zbl

[13] Huynh D. V., Rizvi S. T., “On some classes of artinian rings”, J. Algebra, 223 (2000), 133–153 | DOI | MR | Zbl

[14] Oshiro K., Wisbauer R., “Modules with every subgenerated module lifting”, Osaka J. Math., 32 (1995), 513–519 | MR | Zbl

[15] Vanaja N., “All finitely generated $M$-subgenerated modules are extending”, Comm. Algebra, 24 (1996), 543–572 | DOI | MR | Zbl

[16] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[17] Faith C., “Rings whose modules have maximal submodules”, Publ. Mat., 39:1 (1995), 201–214 | DOI | MR | Zbl

[18] Krylov P. A., Tuganbaev A. A., “Moduli nad koltsami formalnykh matrits”, Fundament. i prikl. matem., 15:8 (2009), 145–211 | MR

[19] Dinh H. Q., Huynh D. V., “Some results on self-injective rings and $\Sigma$-$CS$ rings”, Commun. Algebra, 31:12 (2003), 6063–6077 | DOI | MR | Zbl

[20] Baccella G., “Semi-artinian $V$-rings and semi-artinian von Neumann regular rings”, J. Algebra, 173 (1995), 587–612 | DOI | MR | Zbl

[21] Rizvi S. T., Roman C. S., “Baer and quasi-Baer modules”, Commun. Algebra, 32:1 (2004), 103–123 | DOI | MR | Zbl

[22] Tutuncu D. K., Tribak R., “On dual Baer module”, Glasg. Math. J., 52:2 (2010), 261–269 | DOI | MR | Zbl

[23] Khuri S. M., “Endomorphism rings of nonsingular modules”, Ann. Sci. Math. Quebec, 4:2 (1980), 145–152 | MR | Zbl