$I_0^*$-modules
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rings over which every module is an $I_0^*$-module dual to $I_0$-module. We describe semiregular rings over which every module is simultaneously $I_0^*$-module and $I_0$-module. We give a description of rings over which every module is a direct sum of injective module and $SV$-module. We investigate relations between weakly Baer modules and $I_0^*$-modules.
Keywords: semi-artinian rings, $SV$-rings, weakly Baer modules.
Mots-clés : $I_0$-modules, $I_0^*$-modules
@article{IVM_2014_8_a0,
     author = {A. N. Abyzov},
     title = {$I_0^*$-modules},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
TI  - $I_0^*$-modules
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/
LA  - ru
ID  - IVM_2014_8_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%T $I_0^*$-modules
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/
%G ru
%F IVM_2014_8_a0
A. N. Abyzov. $I_0^*$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2014), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2014_8_a0/