On the Dirichlet problem for hyperbolic equations of the third order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet problem for linear hyperbolic equations of the third order. We prove the existence and uniqueness of classical solution with the use of an energy inequality and Riemann's method. We reveal the effect of influence of coefficients at minor derivatives on the well-posedness of the Dirichlet problem.
Keywords: hyperbolic equation, boundary-value problem, Dirichlet problem, Riemann's function, Fredholm and Volterra equations.
Mots-clés : Goursat problem
@article{IVM_2014_7_a5,
     author = {O. S. Zikirov},
     title = {On the {Dirichlet} problem for hyperbolic equations of the third order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--71},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a5/}
}
TY  - JOUR
AU  - O. S. Zikirov
TI  - On the Dirichlet problem for hyperbolic equations of the third order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 63
EP  - 71
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_7_a5/
LA  - ru
ID  - IVM_2014_7_a5
ER  - 
%0 Journal Article
%A O. S. Zikirov
%T On the Dirichlet problem for hyperbolic equations of the third order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 63-71
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_7_a5/
%G ru
%F IVM_2014_7_a5
O. S. Zikirov. On the Dirichlet problem for hyperbolic equations of the third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 63-71. http://geodesic.mathdoc.fr/item/IVM_2014_7_a5/

[1] Dzhuraev T. D., Popelek Ya., “O klassifikatsii i privedenii k kanonicheskomu vidu uravnenii s chastnymi proizvodnymi tretego poryadka”, Differents. uravneniya, 27:10 (1991), 1734–1745 | MR | Zbl

[2] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl

[3] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazansk. matem. o-vo, Kazan, 2001

[4] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | MR | Zbl

[5] Dzhokhadze O. M., “Vliyanie mladshikh chlenov na korrektnost postanovki kharakteristicheskikh zadach dlya giperbolicheskikh uravnenii tretego poryadka”, Matem. zametki, 74:4 (2003), 517–528 | DOI | MR | Zbl

[6] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayushikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[7] Colton D., “Pseudoparabolic equations in one space variable”, J. Different. Equations, 12:3 (1972), 559–565 | DOI | MR | Zbl

[8] Randell W., “The construction of solutions to pseudoparabolic equations in noncylindrical domains”, J. Different. Equations, 27:3 (1978), 394–404 | DOI | MR

[9] Sabitov K. B., Uravneniya matematicheskoi fiziki, Ucheb. posobie dlya vuzov, Vysshaya shkola, M., 2003

[10] Sabitov K. B., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl

[11] Utkina E. A., “Teorema edinstvennosti resheniya odnoi zadachi Dirikhle”, Izv. vuzov. Matem., 2011, no. 5, 62–67 | MR

[12] Dzhuraev T. D., Zikirov O. S., “Zadacha Gursa i nelokalnaya zadacha dlya odnogo klassa uravnenii tretego poryadka”, Neklassicheskie uravneniya matematicheskoi fiziki, Institut matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2005, 98–109

[13] Zikirov O. S., “On boundary-value problem for hyperbolic-type equation of the third order”, Lith. Math. J., 47:4 (2007), 484–495 | DOI | MR