Commutator inequalities associated with polar decompositions of $\tau$-measurable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 56-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove commutator inequalities associated with polar decompositions of $\tau$-measurable operators.
Keywords: $\tau$-measurable operator, noncommutative symmetric space, von Neumann algebra.
@article{IVM_2014_7_a4,
     author = {D. Dauitbek and N. E. Tokmagambetov and K. S. Tulenov},
     title = {Commutator inequalities associated with polar decompositions of $\tau$-measurable operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--62},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a4/}
}
TY  - JOUR
AU  - D. Dauitbek
AU  - N. E. Tokmagambetov
AU  - K. S. Tulenov
TI  - Commutator inequalities associated with polar decompositions of $\tau$-measurable operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 56
EP  - 62
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_7_a4/
LA  - ru
ID  - IVM_2014_7_a4
ER  - 
%0 Journal Article
%A D. Dauitbek
%A N. E. Tokmagambetov
%A K. S. Tulenov
%T Commutator inequalities associated with polar decompositions of $\tau$-measurable operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 56-62
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_7_a4/
%G ru
%F IVM_2014_7_a4
D. Dauitbek; N. E. Tokmagambetov; K. S. Tulenov. Commutator inequalities associated with polar decompositions of $\tau$-measurable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 56-62. http://geodesic.mathdoc.fr/item/IVM_2014_7_a4/

[1] Fong C. K., “Norm estimates related to self-commutators”, Linear Algebra Appl., 74 (1986), 151–156 | DOI | MR | Zbl

[2] Bikchentaev A. M., “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana. II”, Matem. zametki, 89:4 (2011), 483–494 | DOI | MR | Zbl

[3] Bikchentaev A. M., “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana”, Sib. matem. zhurn., 51:6 (2010), 1228–1236 | MR | Zbl

[4] Bikchentaev A. M., “Perestanovochnost operatorov i kharakterizatsiya sleda na $C^*$-algebrakh”, Dokl. RAN, 448:5 (2013), 506–509 | DOI | MR | Zbl

[5] Bikchentaev A. M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Matem. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl

[6] Kittaneh F., “Commutator inequalities associated with the polar decomposition”, Proc. Amer. Math. Soc., 130:5 (2002), 1279–1283 | DOI | MR | Zbl

[7] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[8] Dodds P. G., Dodds T. K., de Pagter B., “Fully symmetric operator spaces”, Integr. Equat. Oper. Theor., 15:6 (1992), 942–972 | DOI | MR | Zbl

[9] Dodds P. G., Dodds T. K., de Pagter B., “Non-commutative Banach function spaces”, Math. Z., 201:4 (1989), 583–597 | DOI | MR | Zbl

[10] Kalton N., Sukochev F., “Symmetric norms and spaces of operators”, J. Reine Angew. Math., 621 (2008), 81–121 | MR | Zbl

[11] Dodds P. G., Dodds T. K., “On a submajorization inequality of T. Ando”, Oper. Theory Adv. Appl., 75 (1995), 113–131 | MR

[12] Fack T., “Sur la notion de valeur caratéristique”, J. Operator Theory, 7:2 (1982), 307–333 | MR | Zbl

[13] Lawrence L. G., Hideki Kosaki, “Jensen's inequality in semi-finite von Neuman algebras”, J. Operator Theory, 23:1 (1990), 3–19 | MR | Zbl

[14] Bhatia R., Matrix analysis, Springer-Verlag, New York, 1997 | MR