Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_7_a2, author = {S. B. Vakarchuk and M. Sh. Shabozov and M. R. Langarshoev}, title = {On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {30--48}, publisher = {mathdoc}, number = {7}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/} }
TY - JOUR AU - S. B. Vakarchuk AU - M. Sh. Shabozov AU - M. R. Langarshoev TI - On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 30 EP - 48 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/ LA - ru ID - IVM_2014_7_a2 ER -
%0 Journal Article %A S. B. Vakarchuk %A M. Sh. Shabozov %A M. R. Langarshoev %T On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 30-48 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/ %G ru %F IVM_2014_7_a2
S. B. Vakarchuk; M. Sh. Shabozov; M. R. Langarshoev. On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 30-48. http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/
[1] Vakarchuk S. B., “On some extremal problems of approximation theory of functions on the real axis. I”, J. Math. Sci., 188:2 (2013), 146–166 | DOI | MR | Zbl
[2] Yusef Kh., “O nailuchshikh priblizheniyakh funktsii i znacheniyakh poperechnikov klassov funktsii v $L_2$”, Primenenie funkts. analiza v teorii priblizhenii, Sb. nauchn. tr. Kalininskogo gos. un-ta, Kalinin, 1988, 100–114
[3] Ibragimov I. I., Nasibov F. G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, DAN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl
[4] Nasibov F. G., “O priblizhenii v $L_2$ tselymi funktsiyami”, DAN Azerb.SSR, 42:4 (1986), 3–6 | MR | Zbl
[5] Popov V. Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matem., 1972, no. 6, 65–73 | MR | Zbl
[6] Vakarchuk S. B., “Exact constant in an inequality of Jackson type for $L_2$-approximation on the line and exact values of mean widths of functional classes”, East J. Approxim., 10:1–2 (2004), 27–39 | MR | Zbl
[7] Vakarchuk S. B., Doronin V. G., “Nailuchshie srednekvadraticheskie priblizheniya tselymi funktsiyami konechnoi stepeni na pryamoi i tochnye znacheniya srednikh poperechnikov funktsionalnykh klassov”, Ukr. matem. zhurn., 62:8 (2010), 1032–1043 | MR | Zbl
[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[9] Shabozov M. Sh., “Poperechniki nekotorykh klassov periodicheskikh differentsiruemykh funktsii v prostranstve $L_2[0,2\pi]$”, Matem. zametki, 87:4 (2010), 616–623 | DOI | MR | Zbl
[10] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[11] Magaril-Ilyaev G. G., “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, DAN SSSR, 318:1 (1991), 35–38 | MR
[12] Magaril-Ilyaev G. G., “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Matem. sb., 182:11 (1991), 1635–1656 | MR | Zbl
[13] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960