On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 30-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some extremal problems of approximation theory of functions at the whole real axis $\mathbb R$ by entire functions of the exponential type. In particular, we find the exact values of the mean $\nu$-widths of classes of functions, defined by the moduli of continuity of $m$th order $\omega_m$ and majorants $\Psi$ satisfying the special type of restriction.
Keywords: best approximation, entire function of exponential type, modulus of continuity, mean $\nu$-width
Mots-clés : majorant.
@article{IVM_2014_7_a2,
     author = {S. B. Vakarchuk and M. Sh. Shabozov and M. R. Langarshoev},
     title = {On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--48},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - M. Sh. Shabozov
AU  - M. R. Langarshoev
TI  - On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 30
EP  - 48
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/
LA  - ru
ID  - IVM_2014_7_a2
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A M. Sh. Shabozov
%A M. R. Langarshoev
%T On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 30-48
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/
%G ru
%F IVM_2014_7_a2
S. B. Vakarchuk; M. Sh. Shabozov; M. R. Langarshoev. On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 30-48. http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/

[1] Vakarchuk S. B., “On some extremal problems of approximation theory of functions on the real axis. I”, J. Math. Sci., 188:2 (2013), 146–166 | DOI | MR | Zbl

[2] Yusef Kh., “O nailuchshikh priblizheniyakh funktsii i znacheniyakh poperechnikov klassov funktsii v $L_2$”, Primenenie funkts. analiza v teorii priblizhenii, Sb. nauchn. tr. Kalininskogo gos. un-ta, Kalinin, 1988, 100–114

[3] Ibragimov I. I., Nasibov F. G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, DAN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl

[4] Nasibov F. G., “O priblizhenii v $L_2$ tselymi funktsiyami”, DAN Azerb.SSR, 42:4 (1986), 3–6 | MR | Zbl

[5] Popov V. Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matem., 1972, no. 6, 65–73 | MR | Zbl

[6] Vakarchuk S. B., “Exact constant in an inequality of Jackson type for $L_2$-approximation on the line and exact values of mean widths of functional classes”, East J. Approxim., 10:1–2 (2004), 27–39 | MR | Zbl

[7] Vakarchuk S. B., Doronin V. G., “Nailuchshie srednekvadraticheskie priblizheniya tselymi funktsiyami konechnoi stepeni na pryamoi i tochnye znacheniya srednikh poperechnikov funktsionalnykh klassov”, Ukr. matem. zhurn., 62:8 (2010), 1032–1043 | MR | Zbl

[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[9] Shabozov M. Sh., “Poperechniki nekotorykh klassov periodicheskikh differentsiruemykh funktsii v prostranstve $L_2[0,2\pi]$”, Matem. zametki, 87:4 (2010), 616–623 | DOI | MR | Zbl

[10] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[11] Magaril-Ilyaev G. G., “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, DAN SSSR, 318:1 (1991), 35–38 | MR

[12] Magaril-Ilyaev G. G., “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Matem. sb., 182:11 (1991), 1635–1656 | MR | Zbl

[13] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960