Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_7_a2, author = {S. B. Vakarchuk and M. Sh. Shabozov and M. R. Langarshoev}, title = {On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {30--48}, publisher = {mathdoc}, number = {7}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/} }
TY - JOUR AU - S. B. Vakarchuk AU - M. Sh. Shabozov AU - M. R. Langarshoev TI - On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 30 EP - 48 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/ LA - ru ID - IVM_2014_7_a2 ER -
%0 Journal Article %A S. B. Vakarchuk %A M. Sh. Shabozov %A M. R. Langarshoev %T On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 30-48 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/ %G ru %F IVM_2014_7_a2
S. B. Vakarchuk; M. Sh. Shabozov; M. R. Langarshoev. On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 30-48. http://geodesic.mathdoc.fr/item/IVM_2014_7_a2/