Slowly varying on infinity semigroups of operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the asymptotical behavior of bounded semigroups of linear operators in Banach spaces. The results are tightly connected with research of stabilisation of solutions of parabolic equations when time tends to infinity. The traditional condition of existence of an average of initial functions is not required.
Keywords:
slowly varying functions, semigroups of linear operators, Beurling spectrum, harmonic analysis.
@article{IVM_2014_7_a0,
author = {A. G. Baskakov and N. S. Kaluzhina and D. M. Polyakov},
title = {Slowly varying on infinity semigroups of operators},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--14},
publisher = {mathdoc},
number = {7},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/}
}
TY - JOUR AU - A. G. Baskakov AU - N. S. Kaluzhina AU - D. M. Polyakov TI - Slowly varying on infinity semigroups of operators JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 3 EP - 14 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/ LA - ru ID - IVM_2014_7_a0 ER -
A. G. Baskakov; N. S. Kaluzhina; D. M. Polyakov. Slowly varying on infinity semigroups of operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/