Slowly varying on infinity semigroups of operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotical behavior of bounded semigroups of linear operators in Banach spaces. The results are tightly connected with research of stabilisation of solutions of parabolic equations when time tends to infinity. The traditional condition of existence of an average of initial functions is not required.
Keywords: slowly varying functions, semigroups of linear operators, Beurling spectrum, harmonic analysis.
@article{IVM_2014_7_a0,
     author = {A. G. Baskakov and N. S. Kaluzhina and D. M. Polyakov},
     title = {Slowly varying on infinity semigroups of operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - N. S. Kaluzhina
AU  - D. M. Polyakov
TI  - Slowly varying on infinity semigroups of operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/
LA  - ru
ID  - IVM_2014_7_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A N. S. Kaluzhina
%A D. M. Polyakov
%T Slowly varying on infinity semigroups of operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/
%G ru
%F IVM_2014_7_a0
A. G. Baskakov; N. S. Kaluzhina; D. M. Polyakov. Slowly varying on infinity semigroups of operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2014), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2014_7_a0/