Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_6_a3, author = {N. P. Mozhey}, title = {Affine connections on three-dimensional {pseudo-Riemannian} homogeneous {spaces.~II}}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--47}, publisher = {mathdoc}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a3/} }
N. P. Mozhey. Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 33-47. http://geodesic.mathdoc.fr/item/IVM_2014_6_a3/
[1] Mozhei N. P., “Affinnye svyaznosti na trekhmernykh psevdorimanovykh odnorodnykh prostranstvakh. I”, Izv. vuzov. Matem., 2013, no. 12, 51–68
[2] Levi-Civita T., “Nozione di parallelismo in una varietà qualunque”, Rend. Circ. Mat. Palermo, 42 (1917), 173–205 | DOI
[3] Weyl H., Raum, Zeit, Materie, Springer, 1970 | MR | Zbl
[4] Lumiste Yu. G., “Teoriya svyaznostei v rassloennykh prostranstvakh”, Itogi nauki i tekhn. Algebra. Topologiya. Geometriya. 1969, VINITI AN SSSR, M., 1971, 123–168 | MR | Zbl
[5] Kruchkovich G. I., “Klassifikatsiya trekhmernykh rimanovykh prostranstv po gruppam dvizhenii”, UMN, 9:1 (1954), 3–40 | MR | Zbl
[6] Thurston W., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc., 6 (1982), 357–381 | DOI | MR
[7] Scott P., “The geometries of 3-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl
[8] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, N.Y.–London, 1963 ; v. II, N.Y.–London, 1969 | MR
[9] Komrakov B., Tchourioumov A., Mozhey N. et al., Three-dimensional isotropically-faithful homogeneous spaces, Preprints No 35–37, Univ. Oslo, 1993
[10] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl
[11] Kowalski O., “Riemannian manifolds with homogeneous geodesics”, Boll. Unione Math. Ital. VII. Ser. B, 5:1 (1991), 189–246 | MR | Zbl