Rearrangement formulas for singular Khenkin--Ramirez integral in strictly pseudoconvex domains
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the rearrangement and composition formulas for singular Khenkin–Ramirez integral in strictly pseudoconvex domains for principal values by Cauchy and by Kerzman–Stein. These formulas are differrent.
Keywords: Khenkin–Ramirez integral, principal value by Kerzman–Stein.
Mots-clés : principal value by Cauchy
@article{IVM_2014_6_a2,
     author = {D. Kh. Dzhumabaev},
     title = {Rearrangement formulas for singular {Khenkin--Ramirez} integral in strictly pseudoconvex domains},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--32},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a2/}
}
TY  - JOUR
AU  - D. Kh. Dzhumabaev
TI  - Rearrangement formulas for singular Khenkin--Ramirez integral in strictly pseudoconvex domains
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 20
EP  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_6_a2/
LA  - ru
ID  - IVM_2014_6_a2
ER  - 
%0 Journal Article
%A D. Kh. Dzhumabaev
%T Rearrangement formulas for singular Khenkin--Ramirez integral in strictly pseudoconvex domains
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 20-32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_6_a2/
%G ru
%F IVM_2014_6_a2
D. Kh. Dzhumabaev. Rearrangement formulas for singular Khenkin--Ramirez integral in strictly pseudoconvex domains. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 20-32. http://geodesic.mathdoc.fr/item/IVM_2014_6_a2/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[2] Kytmanov A. M., Prenov B. B., Tarkhanov N. N., “Formula Puankare–Bertrana dlya integrala Martinelli–Bokhnera”, Izv. vuzov. Matem., 1992, no. 11, 29–34 | MR | Zbl

[3] Katsunova A. S., “O formule perestanovki povtornogo osobogo integrala Bokhnera–Martinelli v strogo psevdovypuklykh oblastyakh”, Zhurn. Sib. federal. un-ta. Ser. Matem. i fizika, 4:1 (2011), 102–111

[4] Kytmanov A. M., Integral Bokhnera–Martinelli i ego prilozheniya, Nauka, Novosibirsk, 1992

[5] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhniki. Ser. Sovremen. probl. matem. Fundam. napravleniya, 7, VINITI, M., 1985, 23–124 | MR | Zbl

[6] Katsunova A. S., Kytmanov A. M., “Formula perestanovki osobogo integrala Koshi–Segë v share iz $\mathbb C^n$”, Izv. vuzov. Matem., 2012, no. 4, 24–33 | MR

[7] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[8] Alt W., “Singuläre Integrale mit gemischten Homogenitäten auf Mannigfaltigkeiten und Anwendungen in der Funktionentheorie”, Math. Zeit., 137:3 (1974), 227–256 | DOI | MR | Zbl

[9] Kerzman N., Stein E. M., “The Szegö kernel in terms of Cauchy–Fantappié kernels”, Duke Math. J., 45:3 (1978), 197–224 | DOI | MR | Zbl

[10] Kytmanov A. M., Myslivets S. G., “O glavnom znachenii po Koshi osobogo integrala Khenkina–Ramireza v strogo psevdovypuklykh oblastyakh prostranstva $\mathbb C^n$”, Sib. matem. zhurn., 46:3 (2005), 625–633 | MR | Zbl

[11] Bilz M., Fefferman Ch., Grossman R., Strogo psevdovypuklye oblasti v $\mathbb C^n$, Mir, M., 1987