Estimates for $L_p$-norms of simple partial fractions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates for $L_p$-norms of simple partial fractions in terms of their $L_r$-norms on limited and unlimited segments of the real axis for different $p>1$ and $r>1$ (S. M. Nikolskii type inequalities). We adduce examples and remarks about sharpness of these inequalities and sphere of their application.
Mots-clés : simple partial fractions
Keywords: $L_p$-norms, estimates for derivatives of simple partial fractions.
@article{IVM_2014_6_a1,
     author = {V. I. Danchenko and A. E. Dodonov},
     title = {Estimates for $L_p$-norms of simple partial fractions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--19},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_6_a1/}
}
TY  - JOUR
AU  - V. I. Danchenko
AU  - A. E. Dodonov
TI  - Estimates for $L_p$-norms of simple partial fractions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 9
EP  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_6_a1/
LA  - ru
ID  - IVM_2014_6_a1
ER  - 
%0 Journal Article
%A V. I. Danchenko
%A A. E. Dodonov
%T Estimates for $L_p$-norms of simple partial fractions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 9-19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_6_a1/
%G ru
%F IVM_2014_6_a1
V. I. Danchenko; A. E. Dodonov. Estimates for $L_p$-norms of simple partial fractions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2014), pp. 9-19. http://geodesic.mathdoc.fr/item/IVM_2014_6_a1/

[1] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl

[2] Danchenko V. I., “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | MR | Zbl

[3] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | DOI | MR | Zbl

[4] Kayumov I. R., “Integralnye otsenki naiprosteishikh drobei”, Izv. vuzov. Matem., 2012, no. 4, 33–45 | MR | Zbl

[5] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:29 (2011), 87–98 | DOI | MR | Zbl

[6] Kayumov I. R., “Neobkhodimoe uslovie skhodimosti naiprosteishikh drobei v $L_p$”, Matem. zametki, 92:1 (2012), 149–152 | DOI | Zbl

[7] Kayumova A. V., “Skhodimost ryadov prostykh drobei v $L_p$”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 154, no. 1, 2012, 208–213

[8] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[9] Bari N. K., “Obobschenie neravenstva A. A. Markova i S. N. Bernshteina”, Izv. AN SSSR. Ser. matem., 18:2 (1954), 159–176 | MR | Zbl

[10] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, 1951, 244–278 | MR | Zbl

[11] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[12] Danchenko V. I., “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:3 (2006), 33–52 | DOI | MR | Zbl

[13] Macintyre A. J., Fuchs W. H. J., “Inequalities for the logarithmic derivatives of a polynomial”, J. London Math. Soc., 15:2 (1940), 162–168 | DOI | MR

[14] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR