To a~solution of the homogeneous Riemann--Hilbert boundary-value problem for analytic function in multiconnected circular domain in a~special case
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new approach to solution of the homogeneous Riemann–Hilbert boundary-value problem for analytic function in multiconnected circular domain. This approach is based on definition of analytic function by known boundary values of its argument in a special case.
Keywords: Riemann–Hilbert boundary-value problem, index of a problem, Schwarz's operator.
@article{IVM_2014_5_a8,
     author = {R. B. Salimov},
     title = {To a~solution of the homogeneous {Riemann--Hilbert} boundary-value problem for analytic function in multiconnected circular domain in a~special case},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--79},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - To a~solution of the homogeneous Riemann--Hilbert boundary-value problem for analytic function in multiconnected circular domain in a~special case
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 75
EP  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/
LA  - ru
ID  - IVM_2014_5_a8
ER  - 
%0 Journal Article
%A R. B. Salimov
%T To a~solution of the homogeneous Riemann--Hilbert boundary-value problem for analytic function in multiconnected circular domain in a~special case
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 75-79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/
%G ru
%F IVM_2014_5_a8
R. B. Salimov. To a~solution of the homogeneous Riemann--Hilbert boundary-value problem for analytic function in multiconnected circular domain in a~special case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/

[1] Salimov R. B., “Modifikatsiya novogo podkhoda k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi krugovoi oblasti”, Izv. Saratovsk. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 32–38

[2] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[5] Mityushew V. V., Adler P. M., “Schwarz problem for multiply connected domains and its application to diffusion around fractal”, Complex Variables, 47:4 (2002), 303–324 | DOI | MR

[6] Ilin V. A., Poznyak E. G., Lineinaya algebra, Nauka, M., 1974 | MR