To a solution of the homogeneous Riemann–Hilbert boundary-value problem for analytic function in multiconnected circular domain in a special case
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 75-79
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a new approach to solution of the homogeneous Riemann–Hilbert boundary-value problem for analytic function in multiconnected circular domain. This approach is based on definition of analytic function by known boundary values of its argument in a special case.
Keywords:
Riemann–Hilbert boundary-value problem, index of a problem, Schwarz's operator.
@article{IVM_2014_5_a8,
author = {R. B. Salimov},
title = {To a~solution of the homogeneous {Riemann{\textendash}Hilbert} boundary-value problem for analytic function in multiconnected circular domain in a~special case},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {75--79},
year = {2014},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/}
}
TY - JOUR AU - R. B. Salimov TI - To a solution of the homogeneous Riemann–Hilbert boundary-value problem for analytic function in multiconnected circular domain in a special case JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 75 EP - 79 IS - 5 UR - http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/ LA - ru ID - IVM_2014_5_a8 ER -
%0 Journal Article %A R. B. Salimov %T To a solution of the homogeneous Riemann–Hilbert boundary-value problem for analytic function in multiconnected circular domain in a special case %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 75-79 %N 5 %U http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/ %G ru %F IVM_2014_5_a8
R. B. Salimov. To a solution of the homogeneous Riemann–Hilbert boundary-value problem for analytic function in multiconnected circular domain in a special case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2014_5_a8/
[1] Salimov R. B., “Modifikatsiya novogo podkhoda k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi krugovoi oblasti”, Izv. Saratovsk. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 32–38
[2] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl
[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl
[5] Mityushew V. V., Adler P. M., “Schwarz problem for multiply connected domains and its application to diffusion around fractal”, Complex Variables, 47:4 (2002), 303–324 | DOI | MR
[6] Ilin V. A., Poznyak E. G., Lineinaya algebra, Nauka, M., 1974 | MR