On boundary points of arbitrary harmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the Lindelöf and Fatou points of arbitrary harmonic functions defined on the until circle. We present the necessary and sufficient conditions for the existence of such points on the unit circle.
Keywords: harmonic functions, Lindelöf points, non-Euclidean circles, normal functions, $P$-sequence, $P'$-sequence.
Mots-clés : Fatou points
@article{IVM_2014_5_a0,
     author = {S. L. Berberyan},
     title = {On boundary points of arbitrary harmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/}
}
TY  - JOUR
AU  - S. L. Berberyan
TI  - On boundary points of arbitrary harmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/
LA  - ru
ID  - IVM_2014_5_a0
ER  - 
%0 Journal Article
%A S. L. Berberyan
%T On boundary points of arbitrary harmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/
%G ru
%F IVM_2014_5_a0
S. L. Berberyan. On boundary points of arbitrary harmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/