On boundary points of arbitrary harmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the Lindelöf and Fatou points of arbitrary harmonic functions defined on the until circle. We present the necessary and sufficient conditions for the existence of such points on the unit circle.
Keywords: harmonic functions, Lindelöf points, non-Euclidean circles, normal functions, $P$-sequence, $P'$-sequence.
Mots-clés : Fatou points
@article{IVM_2014_5_a0,
     author = {S. L. Berberyan},
     title = {On boundary points of arbitrary harmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/}
}
TY  - JOUR
AU  - S. L. Berberyan
TI  - On boundary points of arbitrary harmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/
LA  - ru
ID  - IVM_2014_5_a0
ER  - 
%0 Journal Article
%A S. L. Berberyan
%T On boundary points of arbitrary harmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/
%G ru
%F IVM_2014_5_a0
S. L. Berberyan. On boundary points of arbitrary harmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2014), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2014_5_a0/

[1] Gavrilov V. I., Zakharyan T. T., Subbotin A. V., “Lineino-topologicheskie svoistva maksimalnykh prostranstv Khardi garmonicheskikh funktsii v kruge”, Dokl. NAN Armenii, 102:3 (2002), 203–209 | MR

[2] Solomentsev E. D., “Garmonicheskie i subgarmonicheskie funktsii i ikh obobscheniya”, Itogi nauki. Ser. Mat. anal. Teor. veroyatn. Regulir. 1962, VINITI AN SSSR, 1964, 83–100 | MR | Zbl

[3] Berberyan S. L., Gavrilov V. I., “Predelnye mnozhestva nepreryvnykh i garmonicheskikh funktsii po nekasatelnym granichnym putyam”, Mathem. Montisnigri, 1 (1993), 17–25 | MR

[4] Berberyan S. L., “O raspredelenii znachenii garmonicheskikh funktsii v edinichnom kruge”, Izv. vuzov. Matem., 2011, no. 6, 12–19 | MR | Zbl

[5] Lappan P. A., “Fatous points of harmonic normal functions and uniformly normal functions”, Math. Zeitschr., 102:2 (1967), 110–114 | DOI | MR | Zbl

[6] Berberyan S. L., “O nekotorykh predelnykh mnozhestvakh garmonicheskikh funktsii”, Dokl. NAN Armenii, 111:1 (2011), 7–14 | MR

[7] Gavrilov V. I., Zakharyan V. S., “Mnozhestvo tochek Lindelëfa proizvolnykh kompleksnykh funktsii”, DAN ArmSSR, 86:1 (1988), 12–16 | MR | Zbl

[8] Gavrilov V. I., “O raspredelenii znachenii meromorfnykh v edinichnom kruge funktsii, ne yavlyayuschikhsya normalnymi”, Matem. sb., 67(109):3 (1965), 408–427 | MR | Zbl

[9] Berberyan S. L., “Ob uglovykh granichnykh znacheniyakh normalnykh nepreryvnykh funktsii”, Izv. vuzov. Matem., 1986, no. 3, 22–28 | MR | Zbl

[10] Berberyan S. L., “Ob uglovykh granichnykh znacheniyakh garmonicheskikh funktsii, porozhdayuschikh normalnoe semeistvo na podgruppakh avtomorfizmov edinichnogo kruga”, Dokl. NAN Armenii, 105:4 (2005), 323–327 | MR

[11] Lappan P. A., “Characterization of Plessner points”, Bull. London Math. Soc., 2:1 (1970), 60–62 | DOI | MR | Zbl

[12] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950

[13] Berberyan S. L., “O granichnykh osobennostyakh normalnykh subgarmonichnykh funktsii”, Math. Montisnigri, 18–19 (2005–2006), 5–14 | MR | Zbl

[14] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[15] Berberyan S. L., “O nekotorykh primeneniyakh $P'$-posledovatelnostei pri issledovanii granichnykh svoistv proizvolnykh garmonicheskikh funktsii”, Izv. vuzov. Matem., 2011, no. 9, 3–9 | MR | Zbl

[16] Gavrilov V. I., “O nekotorykh teoremakh edinstvennosti dlya meromorfnykh funktsii”, Tr. seminara im. I. G. Petrovskogo, 1, 1975, 57–62 | MR | Zbl