Functional differential inequalities and estimation of the Cauchy function of an equation with aftereffect
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider scalar functional differential inequalities that are used to estimate solutions of differential equations with deviating argument. A theorem on positiveness of the Cauchy function of a differential equation with aftereffect is derived from a theorem on a functional differential inequality with nonlinear monotone operator, which is a direct generalization of the simplest classical theorem on a differential inequality. The suggested proofs rely on local properties of continuous functions, only.
Keywords: differential inequality, equation with aftereffect, estimate of solution, stability
Mots-clés : test equation.
@article{IVM_2014_4_a5,
     author = {K. M. Chudinov},
     title = {Functional differential inequalities and estimation of the {Cauchy} function of an equation with aftereffect},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--61},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_4_a5/}
}
TY  - JOUR
AU  - K. M. Chudinov
TI  - Functional differential inequalities and estimation of the Cauchy function of an equation with aftereffect
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 52
EP  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_4_a5/
LA  - ru
ID  - IVM_2014_4_a5
ER  - 
%0 Journal Article
%A K. M. Chudinov
%T Functional differential inequalities and estimation of the Cauchy function of an equation with aftereffect
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 52-61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_4_a5/
%G ru
%F IVM_2014_4_a5
K. M. Chudinov. Functional differential inequalities and estimation of the Cauchy function of an equation with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 52-61. http://geodesic.mathdoc.fr/item/IVM_2014_4_a5/

[1] Chaplygin S. A., Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[3] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation theory of functional differential equations with applications, Springer, New York–Dordrecht–Heidelberg–London, 2012 | MR

[4] Azbelev N. V., Simonov P. M., Ustoichivost uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001

[5] Maksimov V. P., Rakhmatullina L. F., “O predstavlenii resheniya lineinogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 9:6 (1973), 1026–1036 | MR | Zbl

[6] Azbelev N. V., Simonov P. M., “Ustoichivost uravnenii s zapazdyvayuschim argumentom”, Izv. vuzov. Matem., 1997, no. 6, 3–16 | MR | Zbl

[7] Azbelev N. V., Rakhmatullina L. F., “Zadacha Koshi dlya differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 8:9 (1972), 1542–1552 | MR

[8] Zubko Yu. I., Tyshkevich V. A., “K voprosu o polozhitelnosti funktsii Koshi”, Differents. uravneniya, 9:7 (1973), 1207–1214 | MR

[9] Gusarenko S. A., Domoshnitskii A. I., “Ob asimptoticheskikh i ostsillyatsionnykh svoistvakh lineinykh skalyarnykh funktsionalno-differentsialnykh uravnenii pervogo poryadka”, Differents. uravneniya, 25:12 (1989), 2090–2103 | MR | Zbl

[10] Malygina V. V., Sabatulina T. L., “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2008, no. 8, 73–77 | MR | Zbl

[11] Sabatulina T. L., “Priznaki polozhitelnosti funktsii Koshi differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2010, no. 11, 50–62 | MR | Zbl

[12] Berezansky L., Braverman E., “On oscillations of equations with distributed delay”, Z. Anal. Anwend., 20 (2001), 489–504 | DOI | MR | Zbl

[13] Petrovitsch M., “Sur une manière d'étendre le théorème de la moyence aux équations différentielles du premier ordre”, Math. Ann., 54:3 (1901), 417–436 | DOI | MR

[14] Ważewski T., “Systèmes des équations et des inégalites différentielles ordinaires aux deuxièmes membres monotones et leurs applications”, Ann. Soc. Polon. Math., 23 (1950), 112–166 | MR

[15] Azbelev N. V., Rakhmatullina L. F., “K voprosu o funktsionalno-differentsialnykh neravenstvakh i monotonnykh operatorakh”, Funktsionalno-differentsialnye uravneniya, Cb., Perm, 1986, 3–9 | Zbl

[16] Myshkis A. D., “O resheniyakh lineinykh odnorodnykh differentsialnykh uravnenii pervogo poryadka ustoichivogo tipa s zapazdyvayuschim argumentom”, Matem. sb., 28(70):3 (1951), 641–658 | MR | Zbl

[17] Malygina V. V., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s posledeistviem”, Izv. vuzov. Matem., 1993, no. 5, 72–85 | MR | Zbl

[18] Malygina V. V., Chudinov K. M., “Ustoichivost reshenii differentsialnykh uravnenii s neskolkimi peremennymi zapazdyvaniyami. I”, Izv. vuzov. Matem., 2013, no. 6, 25–36 | Zbl

[19] Malygina V. V., Chudinov K. M., “Ustoichivost reshenii differentsialnykh uravnenii s neskolkimi peremennymi zapazdyvaniyami. II”, Izv. vuzov. Matem., 2013, no. 7, 3–15 | Zbl

[20] Malygina V. V., Chudinov K. M., “Ustoichivost reshenii differentsialnykh uravnenii s neskolkimi peremennymi zapazdyvaniyami. III”, Izv. vuzov. Matem., 2013, no. 8, 44–56

[21] Kulikov A. Yu., Malygina V. V., “Ob ustoichivosti poluavtonomnykh raznostnykh uravnenii”, Izv. vuzov. Matem., 2011, no. 5, 25–34 | MR | Zbl

[22] Sabatulina T. L., Malygina V. V., “Ob ustoichivosti lineinogo differentsialnogo uravneniya s ogranichennym posledeistviem”, Izv. vuzov. Matem., 2014, no. 4, 25–41