On stability of a~differential equation with aftereffect
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 25-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions of exponential and uniform stability for a solution of a linear differential equation with bounded aftereffect, in the form of domains in the parameter space. We construct examples that show exactness of boundaries of stability domains for two classes of functional differential equations, with concentrated and distributed delay. Along with classic methods of functional analysis and theory of functions we use the test-equations method.
Keywords: functional differential equation, aftereffect, stability, Cauchy function
Mots-clés : test equation.
@article{IVM_2014_4_a3,
     author = {T. L. Sabatulina and V. V. Malygina},
     title = {On stability of a~differential equation with aftereffect},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--41},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_4_a3/}
}
TY  - JOUR
AU  - T. L. Sabatulina
AU  - V. V. Malygina
TI  - On stability of a~differential equation with aftereffect
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 25
EP  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_4_a3/
LA  - ru
ID  - IVM_2014_4_a3
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%A V. V. Malygina
%T On stability of a~differential equation with aftereffect
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 25-41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_4_a3/
%G ru
%F IVM_2014_4_a3
T. L. Sabatulina; V. V. Malygina. On stability of a~differential equation with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 25-41. http://geodesic.mathdoc.fr/item/IVM_2014_4_a3/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[2] Krasnoselskii M. A., Zabreiko P. P., Pustylnik I. E., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[3] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byull. MGU. Sektsiya A, 1:8 (1938), 1–25

[4] Maksimov V. P., Voprosy obschei teorii funktsionalno-differentsialnykh uravnenii, Izbran. trudy, Izd-vo PGU, PSI, PSSGK, Perm, 2003

[5] Maksimov V. P., Rakhmatullina L. F., “O predstavlenii resheniya lineinogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 9:6 (1973), 1026–1036 | MR | Zbl

[6] Maksimov V. P., “O formule Koshi dlya funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 13:4 (1977), 601–606 | MR | Zbl

[7] Azbelev N. V., Berezanskii L. M., Simonov P. M., Chistyakov A. V., “Ustoichivost differentsialnykh sistem s posledeistviem. IV”, Differents. uravneniya, 29:2 (1993), 196–204 | MR | Zbl

[8] Abramovich Yu. A., “O prostranstve operatorov, deistvuyuschikh mezhdu banakhovymi reshetkami”, Zap. nauchn. semin. LOMI, 73, 1977, 188–192 | MR | Zbl

[9] Bukhvalov A. V., Korotkov V. B., Kusraev A. G., Vektornye reshetki i integralnye operatory, Nauka, Sib. otd., Novosibirsk, 1992 | MR

[10] Kantorovitch L., Vulich B., “Sur la représentation des opérations linéaires”, Compositio Mathematica, 5 (1938), 119–165 http://www.numdam.org/item?id=CM_1938__5__119_0 | MR

[11] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[12] Azbelev N. V., Sulavko T. S., “K voprosu ob ustoichivosti reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 10:12 (1974), 2091–2100 | MR

[13] Azbelev N. V., Simonov P. M., Ustoichivost uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001

[14] Sabatulina T. L., “Priznaki polozhitelnosti funktsii Koshi differentsialnogo uravneniya s raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2010, no. 11, 50–62 | MR | Zbl

[15] Berezansky L., Braverman E., “Linearized oscillation theory for nonlinear equation with a distributed delay”, Appl. Math. and Comp. Model., 48 (2008), 287–304 | DOI | MR | Zbl

[16] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[17] Malygina V. V., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s posledeistviem”, Izv. vuzov. Matem., 1993, no. 5, 72–85 | MR | Zbl

[18] Malygina V. V., Chudinov K. M., “Ustoichivost reshenii differentsialnykh uravnenii s neskolkimi peremennymi zapazdyvaniyami. I”, Izv. vuzov. Matem., 2013, no. 6, 25–36 | Zbl

[19] Malygina V. V., “Nekotorye priznaki ustoichivosti funktsionalno-differentsialnykh uravnenii, razreshennykh otnositelno proizvodnoi”, Izv. vuzov. Matem., 1992, no. 7, 46–53 | MR | Zbl

[20] Yoneyama T., “On the $3/2$ stability theorem for one-dimensional delay-differential equations with unbounded delay”, J. Math. Anal. Appl., 165 (1992), 133–143 | DOI | MR | Zbl