Pierce sheaf for semirings with involution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 18-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concept of Pierce sheaf for semirings with involution, an analog of Pierce sheaf for rings. We construct maximal spectrum, Pierce congruence, Pierce sheaf of semirings with involution, Pierce stalk of semiring with involution. We prove main theorem on the isomorphism of semiring with involution and semiring with involution of global sections of Pierce sheaf.
Keywords: semiring, semiring with involution, Pierce sheaf, Pierce stalk, functional representation of a semiring.
@article{IVM_2014_4_a2,
     author = {R. V. Markov},
     title = {Pierce sheaf for semirings with involution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--24},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_4_a2/}
}
TY  - JOUR
AU  - R. V. Markov
TI  - Pierce sheaf for semirings with involution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 18
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_4_a2/
LA  - ru
ID  - IVM_2014_4_a2
ER  - 
%0 Journal Article
%A R. V. Markov
%T Pierce sheaf for semirings with involution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 18-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_4_a2/
%G ru
%F IVM_2014_4_a2
R. V. Markov. Pierce sheaf for semirings with involution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 18-24. http://geodesic.mathdoc.fr/item/IVM_2014_4_a2/

[1] Pierce R. S., “Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70 (1967), 1–112 | MR

[2] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[3] Chermnykh V. V., “Puchkovye predstavleniya polukolets”, UMN, 48:5 (1993), 185–186 | MR | Zbl

[4] Chermnykh V. V., Funktsionalnye predstavleniya polukolets, Izd-vo VyatGGU, Kirov, 2010

[5] Vechtomov E. M., Funktsionalnye predstavleniya kolets, Izd-vo MPGU, M., 1993 | MR

[6] Davey B. A., “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134 (1973), 275–290 | DOI | MR | Zbl

[7] Chermnykh V. V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matem., 17:3 (2012), 111–227 | MR | Zbl

[8] Bredon G. E., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl