Characters and coverings of compact groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider characters and finite-sheeted coverings of compact connected abelian groups and prove analytic and algebraic properties of characters. As an application of these results, we show that the character group of a compact connected abelian group with trivial finite-sheeted coverings is divisible.
Keywords: compact connected abelian group, character of a compact group, finite-sheeted covering mapping, character group
Mots-clés : divisible group.
@article{IVM_2014_4_a1,
     author = {R. N. Gumerov},
     title = {Characters and coverings of compact groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--17},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_4_a1/}
}
TY  - JOUR
AU  - R. N. Gumerov
TI  - Characters and coverings of compact groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 11
EP  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_4_a1/
LA  - ru
ID  - IVM_2014_4_a1
ER  - 
%0 Journal Article
%A R. N. Gumerov
%T Characters and coverings of compact groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 11-17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_4_a1/
%G ru
%F IVM_2014_4_a1
R. N. Gumerov. Characters and coverings of compact groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 11-17. http://geodesic.mathdoc.fr/item/IVM_2014_4_a1/

[1] van Kampen E. R., “On almost periodic functions of constant absolute value”, J. London Math. Soc., 12:1 (1937), 3–6 | Zbl

[2] Gorin E. A., Lin V. Ya., “Algebraicheskie uravneniya s nepreryvnymi koeffitsientami i nekotorye voprosy algebraicheskoi teorii kos”, Matem. sb., 78(120):4 (1969), 579–610 | MR | Zbl

[3] Grigorian S. A., Gumerov R. N., “On the structure of finite coverings of compact connected groups”, Topology Appl., 153:18 (2006), 3598–3614 | DOI | MR | Zbl

[4] Gorin E. A., “Funktsionalno-algebraicheskii variant teoremy Bora–van Kampena”, Matem. sb., 82(124):2 (1970), 260–272 | MR | Zbl

[5] Hansen V. L., Braids and coverings – selected topics, London Math. Soc. Stud. Texts, 18, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[6] Hansen V. L., “Coverings defined by Weierstrass polynomials”, J. Reine Angew. Math., 314 (1980), 29–39 | MR | Zbl

[7] Gumerov R. N., “Mnogochleny Veiershtrassa i nakrytiya kompaktnykh grupp”, Sib. matem. zhurn., 54:2 (2013), 320–324 | MR | Zbl

[8] Fort M. K. (Jr.), “Images of plane continua”, Amer. J. Math., 81:3 (1959), 541–546 | DOI | MR | Zbl

[9] Kawamura K., Muira T., “On the existence of continuous (approximate) roots of algebraic equations”, Topology Appl., 154:2 (2007), 434–442 | DOI | MR | Zbl

[10] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975

[11] Gumerov R. N., “On finite-sheeted covering mappings onto solenoids”, Proc. Amer. Math. Soc., 133:9 (2005), 2771–2778 | DOI | MR | Zbl