One classification of von~Neumann algebra in a~space with conjugation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper for the first time we show that in the complex Hilbert space with the conjugation operator a classification of von Neumann algebras is possible. Similar classification is known for Krein spaces. Projectors (idempotents) often serve as elements of quantum logic. In operator theories projectors play the role of elements from which bounded operators are constructed. For one special case we show that for any projector from von Neumann algebra which acts in a separable Hilbert space one can always find conjugation operator $J$ adjoined to this algebra for which the projector is self-adjoint.
Keywords: Hilbert space, von Neumann algebra, conjugation operator, projection.
@article{IVM_2014_4_a0,
     author = {E. V. Vladova and M. S. Matveichuk and Yu. G. Ogai},
     title = {One classification of {von~Neumann} algebra in a~space with conjugation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_4_a0/}
}
TY  - JOUR
AU  - E. V. Vladova
AU  - M. S. Matveichuk
AU  - Yu. G. Ogai
TI  - One classification of von~Neumann algebra in a~space with conjugation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_4_a0/
LA  - ru
ID  - IVM_2014_4_a0
ER  - 
%0 Journal Article
%A E. V. Vladova
%A M. S. Matveichuk
%A Yu. G. Ogai
%T One classification of von~Neumann algebra in a~space with conjugation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_4_a0/
%G ru
%F IVM_2014_4_a0
E. V. Vladova; M. S. Matveichuk; Yu. G. Ogai. One classification of von~Neumann algebra in a~space with conjugation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2014), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2014_4_a0/

[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Vyssh. shkola, Kharkov, 1977

[2] Matvejchuk M., “Probability measures in $W^*J$-algebras in Hilbert spaces with conjugation”, Proc. Amer. Math. Soc., 126:4 (1998), 1155–1163 | DOI | MR

[3] Matvejchuk M., “Idempotents as $J$-projections”, Int. J. Theor. Phys., 50:12 (2012), 3852–3856 | DOI | MR

[4] Dixmier J., Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villiars, Paris, 1969 | Zbl

[5] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR

[6] Meltser M. M., “O klassifikatsii $J$-algebr Neimana”, Funkts. analiz i ego primeneniya, 13:4 (1979), 83–84 | MR | Zbl

[7] Meltser M. M., “Opisanie $J$-algebr fon Neimana”, Izv. AN UzbSSR. Ser. fiz.-matem. nauk, 1980, no. 3, 41–49 | MR

[8] Meltser M. M., “$J$-proektory v $J$-algebrakh Neimana”, Izv. AN UzbSSR. Ser. fiz.-matem. nauk, 1981, no. 6, 29–32 | MR