Approximate conformal mapping of a~unit circle on simply connected domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 57-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method of constructing the analytic function realizing an approximate conformal mapping of the unit disk on an arbitrary simply connected domain with the given smooth parametrically defined boundary. The method is based on a new boundary parameterization. Solution of the problem is reduced to the Fredholm integral equation of the second kind. We present the examples of three ways to solve the integral equation.
Keywords: conformal mapping, integral equation, contracting mapping.
@article{IVM_2014_3_a4,
     author = {E. A. Shirokova},
     title = {Approximate conformal mapping of a~unit circle on simply connected domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--67},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_3_a4/}
}
TY  - JOUR
AU  - E. A. Shirokova
TI  - Approximate conformal mapping of a~unit circle on simply connected domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 57
EP  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_3_a4/
LA  - ru
ID  - IVM_2014_3_a4
ER  - 
%0 Journal Article
%A E. A. Shirokova
%T Approximate conformal mapping of a~unit circle on simply connected domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 57-67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_3_a4/
%G ru
%F IVM_2014_3_a4
E. A. Shirokova. Approximate conformal mapping of a~unit circle on simply connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 57-67. http://geodesic.mathdoc.fr/item/IVM_2014_3_a4/

[1] Theodorsen T., Garrick I. E., General potential theory of arbitrary wing sections, NACA Rep. 452, 1933

[2] Gutknecht M. N., “Numerical conformal mappings based on function cojugation”, J. Comput. Appl. Math., 14:1–2 (1986), 31–77 | DOI | MR | Zbl

[3] Hübner O., “The Newton method for solving the Theodorsen equation”, J. Comput. Appl. Math., 14:1–2 (1986), 19–30 | DOI | MR | Zbl

[4] Wegman R., “An iterative method for conformal mapping”, J. Comput. Appl. Math., 14:1–2 (1986), 7–18 | DOI | MR | Zbl

[5] Song E.-J., “A study on stabilization for numerical conformal mapping”, J. Appl. Math. Computing, 20:1–2 (2006), 611–621

[6] Stephenson K., Introduction to circle packing, the theory of discrete analytic functions, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[7] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[8] Trikomi F., Integralnye uravneniya, In. lit., M., 1960 | MR

[9] Shirokova E. A., “O svedenii resheniya obratnoi kraevoi zadachi k resheniyu integralnogo uravneniya Fredgolma”, Izv. vuzov. Matem., 1994, no. 8, 72–80 | MR | Zbl