On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 40-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometrically nonlinear physically linear boundary-value problems solvability for shallow isotropic elastic shells within the framework of S. P. Timoshenko shift model. The method of study consists in reducing of the equilibrium equations reference system to one nonlinear differential equation relative to deflection. In this case the significant role is played by integral representations for the tangential shifts and the angle of rotations, which are reduced with the attraction of the general solutions of the inhomogeneous Cauchy–Riemann equation. The solvability of equation relative to deflection is established with the use of of principle of contraction mappings.
Mots-clés : Timoshenko type shell, Sobolev spaces
Keywords: equilibrium equations system, boundary problem, generalized shifts, generalized problem solution, integral images, operator, integral equations, holomorphic functions, existence theorem.
@article{IVM_2014_3_a3,
     author = {S. N. Timergaliev},
     title = {On existence of solutions to geometrically nonlinear problems for shallow shells of the {Timoshenko} type with free edges},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--56},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_3_a3/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 40
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_3_a3/
LA  - ru
ID  - IVM_2014_3_a3
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 40-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_3_a3/
%G ru
%F IVM_2014_3_a3
S. N. Timergaliev. On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 40-56. http://geodesic.mathdoc.fr/item/IVM_2014_3_a3/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR

[2] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30 | MR | Zbl

[3] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR

[4] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Diss. $\dots$ d-ra fiz.-matem. nauk, Kazan, 2003

[5] Timergaliev S. N., “K voprosu o razreshimosti kraevykh zadach nelineinoi teorii pologikh obolochek tipa Timoshenko”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 150, no. 1, 2008, 115–123 | Zbl

[6] Timergaliev S. N., “O razreshimosti geometricheski nelineinykh kraevykh zadach dlya anizotropnykh obolochek tipa Timoshenko s zhestko zadelannymi krayami”, Izv. vuzov. Matem., 2011, no. 8, 56–68 | MR | Zbl

[7] Timergaliev S. N., “O suschestvovanii reshenii nelineinykh kraevykh zadach dlya pologikh obolochek tipa Timoshenko s sharnirno opertymi krayami”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy VIII Vserossiisk. konf., Izd-vo KFU, Kazan, 2010, 439–444

[8] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975 | MR

[9] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[10] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963 | MR

[11] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[12] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR