On positiveness of the fundamental solution to a~difference equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharp and effective conditions of positiveness of the fundamental solution for linear scalar difference equations. Two approaches are realized, namely, an analytic one (in terms of properties of the characteristic equation) and a geometric one (in terms of a domain in the parameter space of the problem).
Keywords: difference equation, fundamental solution, fixed sign of solution.
@article{IVM_2014_3_a1,
     author = {V. V. Malygina},
     title = {On positiveness of the fundamental solution to a~difference equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--32},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_3_a1/}
}
TY  - JOUR
AU  - V. V. Malygina
TI  - On positiveness of the fundamental solution to a~difference equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 19
EP  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_3_a1/
LA  - ru
ID  - IVM_2014_3_a1
ER  - 
%0 Journal Article
%A V. V. Malygina
%T On positiveness of the fundamental solution to a~difference equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 19-32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_3_a1/
%G ru
%F IVM_2014_3_a1
V. V. Malygina. On positiveness of the fundamental solution to a~difference equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 19-32. http://geodesic.mathdoc.fr/item/IVM_2014_3_a1/

[1] Gandolfo G., Economic dynamics: methods and models, North-Holland, Amsterdam, 1980 | MR | Zbl

[2] Shapiro A. P., Luppov S. P., Rekurrentnye uravneniya v populyatsionnoi biologii, Nauka, M., 1982

[3] Kosić V. L., Ladas G., Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, 256, Kluwer Academic Publisher Group, Dordrecht, 1993 | MR

[4] Teptin A. L., “O kolebaniyakh reshenii lineinogo raznostnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1963, no. 2, 120–123 | MR | Zbl

[5] Teptin A. L., “Teoremy o raznostnykh neravenstvakh dlya $n$-tochechnykh raznostnykh kraevykh zadach”, Matem. sb., 62(104):3 (1963), 345–370 | MR | Zbl

[6] Aizikovich A. A., “Kriterii neostsillyatsii reshenii raznostnogo uravneniya”, Differents. uravneniya, 17:12 (1981), 2201–2211 | MR

[7] Berezansky L., Braverman E., “On existence of positive solutions for linear difference equations with several delays”, Adv. Dynam. Systems Appl., 1:1 (2006), 29–47 | MR | Zbl

[8] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[9] Kulikov A. Yu., Malygina V. V., “Ob ustoichivosti neavtonomnykh raznostnykh uravnenii s neskolkimi zapazdyvaniyami”, Izv. vuzov. Matem., 2008, no. 3, 18–26 | MR | Zbl

[10] Azbelev N. V., Simonov P. M., Ustoichivost uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001

[11] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, In. lit., M., 1961 | MR

[12] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Fizmatlit, M., 1990