Generalized solutions and generalized eigenfunctions of boundary-value problems on a~geometric graph
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalized solutions to boundary-value problems for elliptic equations on an arbitrary geometric graph and their corresponding eigenfunctions. We construct analogs of Sobolev spaces that are dense in $L_2$. We obtain conditions for the Fredholm solvability of boundary-value problems of different types, describe their spectral properties and conditions of the decomposition of generalized eigenfunctions. The results presented here are fundamental in the study of boundary control problems of oscillations of multiplex jointed structures, consisting of strings or rods, as well as in the study of cell metabolism.
Keywords: generalized derivative, generalized solutions, generalized eigenfunctions.
@article{IVM_2014_3_a0,
     author = {A. S. Volkova and V. V. Provotorov},
     title = {Generalized solutions and generalized eigenfunctions of boundary-value problems on a~geometric graph},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_3_a0/}
}
TY  - JOUR
AU  - A. S. Volkova
AU  - V. V. Provotorov
TI  - Generalized solutions and generalized eigenfunctions of boundary-value problems on a~geometric graph
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_3_a0/
LA  - ru
ID  - IVM_2014_3_a0
ER  - 
%0 Journal Article
%A A. S. Volkova
%A V. V. Provotorov
%T Generalized solutions and generalized eigenfunctions of boundary-value problems on a~geometric graph
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_3_a0/
%G ru
%F IVM_2014_3_a0
A. S. Volkova; V. V. Provotorov. Generalized solutions and generalized eigenfunctions of boundary-value problems on a~geometric graph. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2014), pp. 3-18. http://geodesic.mathdoc.fr/item/IVM_2014_3_a0/

[1] Penkin O. M., Ellipticheskie uravneniya na stratifitsirovannykh mnozhestvakh, Diss. $\dots$ dokt. fiz-matem. nauk, Voronezh, 2004

[2] Kamenskii M. I., Penkin O. M., Pokornyi Yu. V., “O polugruppe v zadachakh diffuzii na prostranstvennoi seti”, Dokl. RAN, 368:2 (1999), 157–159 | MR

[3] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhizdat, M., 1953

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Smirnov V. I., Kurs vysshei matematiki, v. IV, Ch. 1, Nauka, M., 1974 | MR

[6] Smirnov V. I., Kurs vysshei matematiki, v. IV, Ch. 2, Nauka, M., 1974 | MR

[7] Provotorov V. V., “Sobstvennye funktsii zadachi Shturma–Liuvillya na grafe-zvezde”, Matem. sb., 199:10 (2008), 105–126 | DOI | MR | Zbl

[8] Volkova A. S., “Fredgolmova razreshimost v klasse $W_2^2$ zadachi Dirikhle dlya uravneniya ellipticheskogo tipa na grafe-zvezde”, Matem. i ee prilozheniya, 1:8 (2011), 15–28

[9] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[10] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[12] Shilov G. E., Matematicheskii analiz. Spetsialnyi kurs, Fizmatlit, M., 1961 | MR

[13] Friedrichs K. O., “Spectraltheorie halbbeschränkter Operatoren und ihre Anwendung auf die Spectralzerlegung von Differentialoperatoren. Part 1”, Math. Ann., 109:1 (1934), 465–487 | DOI | MR | Zbl

[14] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR